AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

LEAVING CERTIFICATE EXAMINATION, 2001

MATHEMATICS - HIGHER LEVEL
PAPER 1 (300 marks)

THURSDAY, 7 JUNE - MORNING, 9.30 to 12.00
\qquad

Attempt SIX QUESTIONS (50 marks each).

WARNING: Marks may be lost if all necessary work is not clearly shown.

1. (a) Find the real numbers a and b such that

$$
x^{2}+4 x-6=(x+a)^{2}+b \quad \text { for all } x \in \mathbf{R} .
$$

(b) Let $f(x)=2 x^{3}+m x^{2}+n x+2$ where m and n are constants.

Given that $x-1$ and $x+2$ are factors of $f(x)$, find the value of m and the value of n.
(c) $x^{2}-p x+q$ is a factor of $x^{3}+3 p x^{2}+3 q x+r$.
(i) Show that $q=-2 p^{2}$.
(ii) Show that $r=-8 p^{3}$.
(iii) Find the three roots of $x^{3}+3 p x^{2}+3 q x+r=0$ in terms of p.
2. (a) Solve the simultaneous equations

$$
\begin{aligned}
x-y & =0 \\
(x+2)^{2}+y^{2} & =10 .
\end{aligned}
$$

(b) (i) Solve for x

$$
|3 x+5|<4
$$

(ii) Simplify $\left(x^{2}+\sqrt{2}+\frac{1}{x^{2}}\right)\left(x^{2}-\sqrt{2}+\frac{1}{x^{2}}\right)$ and express your answer in the form $x^{n}+\frac{1}{x^{n}}$ where n is a whole number.
(c) α and β are real numbers such that $\alpha+\beta=-7$ and $\alpha \beta=11$.
(i) Show that $\alpha^{2}+\beta^{2}=27$.
(ii) Find a quadratic equation with roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ and write your answer in the form $p x^{2}+q x+r=0$ where $p, q, r \in \mathbf{Z}$.
3. (a) Let $u=\frac{1+3 i}{3+i}$ where $i^{2}=-1$.
(i) Express u in the form $a+i b$ where $a, b \in \mathbf{R}$.
(ii) Evaluate $|u|$.
(b) (i) Write the simultaneous equations

$$
\begin{aligned}
& x-\sqrt{3} y=-2 \\
& \sqrt{3} x+y=2 \sqrt{3}
\end{aligned}
$$

in the form $A\binom{x}{y}=\binom{-2}{2 \sqrt{3}}$ where A is a 2×2 matrix.
(ii) Then, find A^{-1} and use it to solve the equations for x and y.
(c) (i) Write $\left(\begin{array}{ll}x & y\end{array}\right)\left(\begin{array}{ll}-2 & 3 \\ -4 & 5\end{array}\right)\binom{x}{y}$ in the form $a x^{2}+b x y+c y^{2}$ where $a, b, c \in \mathbf{Z}$.
(ii) Show that $z^{2}-16$ is a factor of $z^{3}+(1+i) z^{2}-16 z-16(1+i)$ and hence, find the three roots of $z^{3}+(1+i) z^{2}-16 z-16(1+i)=0$.
4. (a) The sum of the first n terms of an arithmetic series is given by $\mathrm{S}_{n}=3 n^{2}-4 n$.

Use S_{n} to find (i) the first term, T_{1}
(ii) the sum of the second term and the third term, $\mathrm{T}_{2}+\mathrm{T}_{3}$.
(b) (i) Show that $\frac{1}{(n+2)(n+3)}=\frac{1}{n+2}-\frac{1}{n+3}$ for $n \in \mathbf{N}$.
(ii) Hence, find $\sum_{n=1}^{k} \frac{1}{(n+2)(n+3)}$ and evaluate $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$.
(c) (i) Write $\frac{n^{3}+8}{n+2}$ in the form $a n^{2}+b n+c$ where $a, b, c \in \mathbf{R}$.
(ii) Hence, evaluate $\sum_{n=1}^{30} \frac{n^{3}+8}{n+2}$.
[Note: $\left.\quad \sum_{n=1}^{k} n=\frac{k}{2}(k+1) ; \quad \sum_{n=1}^{k} n^{2}=\frac{k}{6}(k+1)(2 k+1).\right]$
5. (a) The second term, T_{2}, of a geometric sequence is 21 .

The third term, T_{3}, is -63 .

Find (i) the common ratio
(ii) the first term.
(b) (i) Solve $\log _{6}(x+5)=2-\log _{6} x$ for $x>0$.
(ii) In the binomial expansion of $(1+k x)^{6}$, the coefficient of x^{4} is 240 . Find the two possible real values of k.
(c) Use induction to prove that, for n a positive integer,

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

for all $\theta \in \mathbf{R}$ and $i^{2}=-1$.
6. (a) Differentiate $\frac{x}{1+x^{2}}$ with respect to x.
(b) (i) Given that $y=\sqrt{x}$, what is $\frac{d y}{d x}$?
(ii) Now, find from first principles the derivative of \sqrt{x} with respect to x.
(c) Let $x=t^{2} e^{t}$ and $y=t+2 \ln t$ for $t>0$.
(i) Find $\frac{d x}{d t}$ and $\frac{d y}{d t}$ in terms of t.
(ii) Hence, show that $\frac{d y}{d x}=\frac{1}{x}$.
7. (a) Taking $x_{1}=1$ as the first approximation to the real root of the equation

$$
x^{3}+x^{2}-1=0,
$$

use the Newton-Raphson method to find x_{2}, the second approximation.
(b) (i) Differentiate $\tan ^{-1} 7 x$ with respect to x.
(ii) Given that $y=\sin x \cos x$, find $\frac{d y}{d x}$ and express it in the form $\cos n x$ where $n \in \mathbf{Z}$.
(c) Let $g(x)=x^{2}+\frac{a}{x^{2}}$ where a is a real number and $x \in \mathbf{R}, x \neq 0$.

Given that $g(x)$ has a turning point at $x=2$,
(i) find the value of a
(ii) prove that $g(x)$ has no local maximum points.
8. (a) Find
(i) $\int \frac{1}{x^{3}} d x$
(ii) $\int \sin 5 x d x$.
(b) Evaluate
(i) $\int_{0}^{3} \frac{12}{x^{2}+9} d x$
(ii) $\int_{0}^{4} \frac{(x+4)}{\sqrt{x^{2}+8 x+1}} d x$.
(c) a is a real number such that $0<a<8$.

The line $y=a x$ intersects the curve $y=x(8-x)$ at $x=0$ and at $x=p$.
(i) Show that $p=8-a$.
(ii) Show that the area between the curve and the line is $\frac{p^{3}}{6}$ square units.

