AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

LEAVING CERTIFICATE EXAMINATION, 2002

MATHEMATICS - HIGHER LEVEL PAPER 1 (300 marks)

THURSDAY, 6 JUNE - MORNING, 9.30 TO 12.00
\qquad

Attempt SIX QUESTIONS (50 marks each).
WARNING: Marks will be lost if all necessary work is not clearly shown.

1. (a) Solve the equation

$$
x=\sqrt{x+2} .
$$

(b) The cubic equation $x^{3}-4 x^{2}+9 x-10=0$ has one integer root and two complex roots. Find the three roots.
(c) $(p+r-t) x^{2}+2 r x+(t+r-p)=0$ is a quadratic equation, where p, r, and t are integers.

Show that
(i) the roots are rational
(ii) one of the roots is an integer.
2. (a) Solve, without using a calculator, the following simultaneous equations:

$$
\begin{aligned}
x+2 y+4 z & =7 \\
x+3 y+2 z & =1 \\
-y+3 z & =8 .
\end{aligned}
$$

(b) (i) Find the range of values of $x \in \mathbf{R}$ for which

$$
x^{2}+x-20 \leq 0
$$

(ii) Let $g(x)=x^{n}+3$, for all $x \in \mathbf{R}$, where $n \in \mathbf{N}$.

Show that if n is odd then $g(x)+g(-x)$ is constant.
(c) (i) Show that if the roots of $x^{2}+b x+c=0$ differ by 1 , then $b^{2}-4 c=1$.
(ii) The roots of the equation

$$
x^{2}+(4 k-5) x+k=0
$$

are consecutive integers.
Using the result from part (i), or otherwise, find the value of k and the roots of the equation.
3. (a) Express $-1+\sqrt{3} i$ in the form $r(\cos \theta+i \sin \theta)$, where $i^{2}=-1$.
(b) (i) Given that $z=2-i \sqrt{3}$, find the real number t such that $z^{2}+t z$ is real.
(ii) w is a complex number such that

$$
w \bar{w}-2 i w=7-4 i,
$$

where \bar{w} is the complex conjugate of w.
Find the two possible values of w.
Express each in the form $p+q i$, where $p, q \in \mathbf{R}$.
(c) The following three statements are true whenever x and y are real numbers:

- $x+y=y+x$
- $x y=y x$
- If $x y=0$ then either $x=0$ or $y=0$.

Investigate whether the statements are also true when x is
the matrix $\left(\begin{array}{cc}3 & -1 \\ -6 & 2\end{array}\right)$ and y is the matrix $\left(\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right)$.
4. (a) Find, in terms of n, the sum of the first n terms of the geometric series

$$
3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots
$$

(b) (i) Show that $\frac{2}{k(k+2)}=\frac{1}{k}-\frac{1}{k+2}$, for all $k \in \mathbf{R}, k \neq 0,-2$.
(ii) Evaluate, in terms of $n, \sum_{k=1}^{n} \frac{2}{k(k+2)}$.
(iii) Evaluate $\sum_{k=1}^{\infty} \frac{2}{k(k+2)}$.
(c) Three numbers are in arithmetic sequence.

Their sum is 27 and their product is 704 .
Find the three numbers.
5. (a) Find the value of x in each case:
(i) $\frac{8}{2^{x}}=32$
(ii) $\quad \log _{9} x=\frac{3}{2}$.
(b) The first three terms in the binomial expansion of $(1+a x)^{n}$ are $1+2 x+\frac{7}{4} x^{2}$.
(i) Find the value of a and the value of n.
(ii) Hence, find the middle term in the expansion.
(c) Prove by induction that, for any positive integer n,

$$
x+x^{2}+x^{3}+\ldots+x^{n}=\frac{x\left(x^{n}-1\right)}{x-1}, \text { where } x \neq 1
$$

6. (a) Differentiate $\left(x^{4}+1\right)^{5}$ with respect to x.
(b) (i) Prove, from first principles, the addition rule:
if $f(x)=u(x)+v(x)$ then $\frac{d f}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$.
(ii) Given $y=2 x-\sin 2 x$, find $\frac{d y}{d x}$.

Give your answer in the form $k \sin ^{2} x$, where $k \in \mathbf{Z}$.
(c) The function $f(x)=a x^{3}+b x^{2}+c x+d$ has a maximum point at $(0,4)$ and a point of inflection at $(1,0)$.
Find the values of a, b, c and d.
7. (a) Find the slope of the tangent to the curve

$$
9 x^{2}+4 y^{2}=40 \text { at the point }(2,1) .
$$

(b) (i) Given that $y=\sin ^{-1} 10 x$, evaluate $\frac{d y}{d x}$ when $x=\frac{1}{20}$.
(ii) The parametric equations of a curve are

$$
x=\ln \left(1+t^{2}\right) \text { and } y=\ln 2 t, \quad \text { where } t \in \mathbf{R}, t>0 .
$$

Find the value of $\frac{d y}{d x}$ when $t=\sqrt{5}$.
(c) Let $f(x)=\frac{e^{x}+e^{-x}}{2}$.
(i) Show that $f^{\prime \prime}(x)=f(x)$, where $f^{\prime \prime}(x)$ is the second derivative of $f(x)$.
(ii) Show that $\frac{f^{\prime}(2 x)}{f^{\prime}(x)}=2 f(x)$ when $x \neq 0$ and where $f^{\prime}(x)$ is the first derivative of $f(x)$.
8. (a) Find $\int\left(x^{3}+\sqrt{x}+2\right) d x$.
(b) Evaluate
(i) $\int_{2}^{7} \frac{2 x-4}{x^{2}-4 x+29} d x$
(ii) $\int_{2}^{7} \frac{1}{x^{2}-4 x+29} d x$.
(c) Let $f(x)=x^{3}-3 x^{2}+5$.
L is the tangent to the curve $y=f(x)$ at its local maximum point.

Find the area enclosed between L and the curve.

