Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE EXAMINATION, 2003

MATHEMATICS - HIGHER LEVEL
PAPER 1 (300 marks)

THURSDAY, 5 JUNE - MORNING, 9:30 to 12:00

Attempt SIX QUESTIONS (50 marks each).
WARNING: Marks will be lost if all necessary work is not clearly shown.

1. (a) Express the following as a single fraction in its simplest form:

$$
\frac{6 y}{x(x+4 y)}-\frac{3}{2 x}
$$

(b) (i) $f(x)=a x^{2}+b x+c$ where $a, b, c \in \mathbf{R}$.

Given that k is a real number such that $f(k)=0$, prove that $x-k$ is a factor of $f(x)$.
(ii) Show that $2 x-\sqrt{3}$ is a factor of $4 x^{2}-2(1+\sqrt{3}) x+\sqrt{3}$ and find the other factor.
(c) The real roots of $x^{2}+10 x+c=0$ differ by $2 p$ where $c, p \in \mathbf{R}$ and $p>0$.
(i) Show that $p^{2}=25-c$.
(ii) Given that one root is greater than zero and the other root is less than zero, find the range of possible values of p.
2. (a) Solve the simultaneous equations:

$$
\begin{gathered}
3 x-y=8 \\
x^{2}+y^{2}=10 .
\end{gathered}
$$

(b) (i) Solve for x :

$$
|4 x+7|<1 .
$$

(ii) Given that $x^{2}-a x-3$ is a factor of $x^{3}-5 x^{2}+b x+9$ where $a, b \in \mathbf{R}$, find the value of a and the value of b.
(c) (i) Solve for y :

$$
2^{2 y+1}-5\left(2^{y}\right)+2=0
$$

(ii) Given that $x=\alpha$ and $x=\beta$ are the solutions of the quadratic equation $2 k^{2} x^{2}+2 k t x+t^{2}-3 k^{2}=0$ where $k, t \in \mathbf{R}$ and $k \neq 0$, show that $\alpha^{2}+\beta^{2}$ is independent of k and t.
3. (a) Evaluate $\left(\begin{array}{ll}1 & -2\end{array}\right)\left(\begin{array}{cc}3 & 0 \\ -5 & 1\end{array}\right)\binom{1}{-2}$.
(b) (i) Given that $z=2-i$, calculate $\left|z^{2}-z+3\right|$ where $i^{2}=-1$.
(ii) k is a real number such that $\frac{-1+i \sqrt{3}}{-4 \sqrt{3}-4 i}=k i$.

Find k.
(c) $1, \omega, \omega^{2}$ are the three roots of the equation $z^{3}-1=0$.
(i) Prove that $1+\omega+\omega^{2}=0$.
(ii) Hence, find the value of $\left(1-\omega-\omega^{2}\right)^{5}$.
4. (a) Express the recurring decimal $0.252525 \ldots$ in the form $\frac{p}{q}$ where $p, q \in \mathbf{N}$ and $q \neq 0$.
(b) In an arithmetic series, the sum of the second term and the fifth term is 18 . The sixth term is greater than the third term by 9 .
(i) Find the first term and the common difference.
(ii) What is the smallest value of n such that $S_{n}>600$, where S_{n} is the sum of the first n terms of the series?
(c) (i) $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, \ldots \ldots$. is a sequence where $u_{1}=2$ and $u_{n+1}=(-1)^{n} u_{n}+3$.

Evaluate $u_{2}, u_{3}, u_{4}, u_{5}$ and u_{10}.
(ii) a, b, c, d are the first, second, third and fourth terms of a geometric sequence, respectively.

Prove that $a^{2}-b^{2}-c^{2}+d^{2} \geq 0$.
5. (a) Solve for x :

$$
x=\sqrt{7 x-6}+2 .
$$

(b) Use induction to prove that 8 is a factor of $7^{2 n+1}+1$ for any positive integer n.
(c) Consider the binomial expansion of $\left(a x+\frac{1}{b x}\right)^{8}$, where a and b are non-zero real numbers.
(i) Write down the general term.
(ii) Given that the coefficient of x^{2} is the equal to the coefficient of x^{4}, show that $a b=2$.
6. (a) Differentiate $\sqrt{1+4 x}$ with respect to x.
(b) Show that the equation $x^{3}-4 x-2=0$ has a root between 2 and 3 .

Taking $x_{1}=2$ as the first approximation to this root, use the Newton-Raphson method to find x_{3}, the third approximation. Give your answer correct to two decimal places.
(c) The function $f(x)=\frac{1}{1-x}$ is defined for $x \in \mathbf{R} \backslash\{1\}$.
(i) Prove that the graph of f has no turning points and no points of inflection.
(ii) Write down a reason that justifies the statement: " f is increasing at every value of $x \in \mathbf{R} \backslash\{1\}$ ".
(iii) Given that $y=x+k$ is a tangent to the graph of f where k is a real number, find the two possible values of k.
7. (a) Differentiate each of the following with respect to x :
(i) $\cos ^{4} x$
(ii) $\sin ^{-1} \frac{x}{5}$.
(b) (i) The parametric equations of a curve are:

$$
\begin{aligned}
& x=\cos t+t \sin t \\
& y=\sin t-t \cos t \quad \text { where } 0<t<\frac{\pi}{2}
\end{aligned}
$$

Find $\frac{d y}{d x}$ and write your answer in its simplest form.
(ii) Given that $\frac{1}{x}+\frac{1}{y}=\frac{1}{6}$, find the value of $\frac{d y}{d x}$ at the point $(2,-3)$.
(c) (i) Given that $y=\ln \frac{1+x^{2}}{1-x^{2}}$ for $0<x<1$,
find $\frac{d y}{d x}$ and write your answer in the form $\frac{k x}{1-x^{k}}$ where $k \in \mathbf{N}$.
(ii) Given that $f(\theta)=\sin (\theta+\pi) \cos (\theta-\pi)$, find the derivative of $f(\theta)$ and express it in the form $\cos n \theta$ where $n \in \mathbf{Z}$.
8.
(a) Find
(i) $\int\left(x^{3}+2\right) d x$
(ii) $\int e^{7 x} d x$.
(b) (i) Evaluate $\int_{0}^{1} \frac{2 x}{\sqrt{1+x^{2}}} d x$.

(c) (i) Show that $\int_{a}^{2 a} \sin 2 x d x=\sin 3 a \sin a$.
(ii) Use integration methods to show that the volume of a sphere with radius r is $\frac{4}{3} \pi r^{3}$.

Blank Page

