Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE EXAMINATION, 2004

MATHEMATICS - HIGHER LEVEL

$$
\text { PAPER } 1 \text { (300 marks) }
$$

THURSDAY, 10 JUNE - MORNING, 9:30 to 12:00

Attempt SIX QUESTIONS (50 marks each).
WARNING: Marks will be lost if all necessary work is not clearly shown.

1. (a) Express $\frac{1-\sqrt{3}}{1+\sqrt{3}}$ in the form $a \sqrt{3}-b$, where a and $b \in \mathbf{N}$.
(b) (i) Let $f(x)=x^{3}+k x^{2}-4 x-12$, where k is a constant.

Given that $x+3$ is a factor of $f(x)$, find the value of k.
(ii) Show that

$$
\frac{3}{1+x^{p}}+\frac{3}{1+x^{-p}} \quad \text { simplifies to a constant. }
$$

(c) (i) Show that $p^{3}+q^{3}-(p+q)^{3}=-3 p q(p+q)$.
(ii) Hence, or otherwise, find, in terms of a and b, the three values of x for which $(a-x)^{3}+(b-x)^{3}-(a+b-2 x)^{3}=0$.
2. (a) Solve, without using a calculator, the following simultaneous equations:

$$
\begin{aligned}
& 3 x+y+z=0 \\
& x-y+z=2 \\
& 2 x-3 y-z=9 .
\end{aligned}
$$

(b) (i) Solve the inequality $\frac{x+1}{x-1}<4$, where $x \in \mathbf{R}$ and $x \neq 1$.
(ii) The roots of $x^{2}+p x+q=0$ are α and β, where $p, q \in \mathbf{R}$.

Find the quadratic equation whose roots are $\alpha^{2} \beta$ and $\alpha \beta^{2}$.
(c) (i) $\quad f(x)=2 x+1$, for $x \in \mathbf{R}$.

Show that there exists a real number k such that for all x, $f(x+f(x))=k f(x)$.
(ii) Show that for any real values of a, b and h, the quadratic equation

$$
(x-a)(x-b)-h^{2}=0
$$

has real roots.
3. (a) Find the real numbers p and q such that

$$
2(p+i q)+i(p-i q)=5+i, \text { where } i^{2}=-1
$$

(b) (i) $z_{1}=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}$ and $z_{2}=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$.

Evaluate $z_{1} z_{2}$, giving your answer in the form $x+i y$.
(ii) $\quad w_{1}=a+i b$ and $w_{2}=c+i d$.

Prove that $\overline{\left(w_{1} w_{2}\right)}=\left(\overline{w_{1}}\right)\left(\overline{w_{2}}\right)$,
where \bar{w} is the complex conjugate of w.
(c) Let $A=\left(\begin{array}{cc}1 & -3 \\ -1 & 2\end{array}\right)$ and $P=\left(\begin{array}{cc}4 & 3 \\ -2 & -1\end{array}\right)$.
(i) Evaluate $A^{-1} P A$ and hence $\left(A^{-1} P A\right)^{10}$.
(ii) Use the fact that $\left(A^{-1} P A\right)^{10}=A^{-1} P^{10} A$ to evaluate P^{10}.
4. (a) Show that $3\binom{n}{3}=n\binom{n-1}{2}$ for all natural numbers $n \geq 3$.
(b) (i) Show that $\frac{2}{(2 r-1)(2 r+1)}=\frac{1}{2 r-1}-\frac{1}{2 r+1}, r \neq \pm \frac{1}{2}$.
(ii) Hence, find $\sum_{r=1}^{n} \frac{2}{(2 r-1)(2 r+1)}$.
(iii) Evaluate $\sum_{r=1}^{\infty} \frac{2}{(2 r-1)(2 r+1)}$.
(c) (i) The sequence $u_{1}, u_{2}, u_{3}, \ldots \ldots$. is given by $u_{n+1}=\sqrt{4-\left(u_{n}\right)^{2}}$ and $u_{1}=a>0$.

For what value of a will all of the terms of the sequence be equal to each other?
(ii) $\quad p, q$ and r are three numbers in arithmetic sequence.

Prove that $p^{2}+r^{2} \geq 2 q^{2}$.
5. (a) Find the fifth term in the expansion of

$$
\left(x^{2}-\frac{1}{x}\right)^{6}
$$

and show that it is independent of x.
(b) (i) In a geometric series, the second term is 8 and the fifth term is 27 . Find the first term and the common ratio.
(ii) Solve $\log _{4} x-\log _{4}(x-2)=\frac{1}{2}$.
(c) Prove by induction that $2^{n} \geq n^{2}, n \in \mathbf{N}, n \geq 4$.
6. (a) Differentiate $\frac{1}{2+5 x}$ with respect to x.
(b) (i) Given $y=\tan ^{-1} x$, find the value of $\frac{d y}{d x}$ at $x=\sqrt{2}$.
(ii) Differentiate, from first principles, $\cos x$ with respect to x.
(c) Let $f(x)=x^{3}+6 x^{2}+15 x+36, \quad x \in \mathbf{R}$.
(i) Show that $f^{\prime}(x)$ can be written in the form $3\left[(x+a)^{2}+b\right], a, b \in \mathbf{R}$, where $f^{\prime}(x)$ is the first derivative of $f(x)$.
(ii) Hence show that $f(x)=0$ has only one real root.
7. (a) An object's distance from a fixed point is given by $s=12+24 t-3 t^{2}$, where s is in metres and t is in seconds.
Find the speed of the object when $t=3$ seconds.
(b) The parametric equations of a curve are:

$$
\begin{aligned}
& x=2 \theta-\sin 2 \theta \\
& y=1-\cos 2 \theta, \text { where } 0<\theta<\pi
\end{aligned}
$$

(i) Find $\frac{d y}{d x}$.
(ii) Show that the tangent to the curve at $\theta=\frac{\pi}{6}$ is perpendicular to the tangent at $\theta=\frac{2 \pi}{3}$.
(c) Given that $x=\frac{e^{2 y}-1}{e^{2 y}+1}$,
(i) show that $e^{2 y}=\frac{1+x}{1-x}$
(ii) show that $\frac{d y}{d x}$ can be expressed in the form $\frac{p}{1-x^{q}}, p, q \in \mathbf{N}$.
8.
(a) Find
(i) $\int \frac{1}{x^{2}} d x$
(ii) $\int \cos 6 x d x$.
(b) Evaluate (i) $\int_{3}^{6} \frac{d x}{\sqrt{36-x^{2}}} \quad$ (ii) $\int_{0}^{\frac{\pi}{3}} \sin x \cos ^{3} x d x$.
(c) The graph of the function $f(x)=a x^{2}+b x+c$ from $x=-h$ to $x=h$ is shown in the diagram.
(i) Show that the area of the shaded region is

$$
\frac{h}{3}\left[2 a h^{2}+6 c\right] .
$$

(ii) Given that $f(-h)=y_{1}, f(0)=y_{2}$ and $f(h)=y_{3}$, express the area of the shaded region in terms of y_{1}, y_{2}, y_{3} and h.

Blank Page

