

LEAVING CERTIFICATE EXAMINATION, 2004

MATHEMATICS — HIGHER LEVEL

PAPER 1 (300 marks)

THURSDAY, 10 JUNE – MORNING, 9:30 to 12:00

Attempt **SIX QUESTIONS** (50 marks each).

WARNING: Marks will be lost if all necessary work is not clearly shown.

1. (a) Express
$$\frac{1-\sqrt{3}}{1+\sqrt{3}}$$
 in the form $a\sqrt{3}-b$, where a and $b \in \mathbb{N}$.

(b) (i) Let $f(x) = x^3 + kx^2 - 4x - 12$, where k is a constant.

Given that x + 3 is a factor of f(x), find the value of k.

- (ii) Show that $\frac{3}{1+x^{p}} + \frac{3}{1+x^{-p}}$ simplifies to a constant.
- (c) (i) Show that $p^3 + q^3 (p+q)^3 = -3pq(p+q)$.
 - (ii) Hence, or otherwise, find, in terms of a and b, the three values of x for which $(a-x)^3 + (b-x)^3 (a+b-2x)^3 = 0$.

2. (a) Solve, without using a calculator, the following simultaneous equations:

$$3x + y + z = 0$$

$$x - y + z = 2$$

$$2x - 3y - z = 9.$$

(b) (i) Solve the inequality $\frac{x+1}{x-1} < 4$, where $x \in \mathbf{R}$ and $x \neq 1$.

- (ii) The roots of $x^2 + px + q = 0$ are α and β , where $p, q \in \mathbf{R}$. Find the quadratic equation whose roots are $\alpha^2 \beta$ and $\alpha \beta^2$.
- (c) (i) f(x) = 2x + 1, for $x \in \mathbf{R}$. Show that there exists a real number k such that for all x, f(x + f(x)) = kf(x).
 - (ii) Show that for any real values of *a*, *b* and *h*, the quadratic equation $(x-a)(x-b) - h^2 = 0$ has real roots.

3. (a) Find the real numbers p and q such that 2(p+iq)+i(p-iq)=5+i, where $i^2=-1$.

(b) (i)
$$z_1 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}$$
 and $z_2 = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$.
Evaluate $z_1 z_2$, giving your answer in the form $x + iy$.

(ii)
$$w_1 = a + ib$$
 and $w_2 = c + id$.

Prove that $\overline{(w_1w_2)} = (\overline{w_1})(\overline{w_2})$, where \overline{w} is the complex conjugate of w.

(c) Let
$$A = \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix}$$
 and $P = \begin{pmatrix} 4 & 3 \\ -2 & -1 \end{pmatrix}$.

- (i) Evaluate $A^{-1}PA$ and hence $(A^{-1}PA)^{10}$.
- (ii) Use the fact that $(A^{-1}PA)^{10} = A^{-1}P^{10}A$ to evaluate P^{10} .

4. (a) Show that
$$3\binom{n}{3} = n\binom{n-1}{2}$$
 for all natural numbers $n \ge 3$.

(b) (i) Show that
$$\frac{2}{(2r-1)(2r+1)} = \frac{1}{2r-1} - \frac{1}{2r+1}$$
, $r \neq \pm \frac{1}{2}$.

(ii) Hence, find
$$\sum_{r=1}^{n} \frac{2}{(2r-1)(2r+1)}$$
.

(iii) Evaluate
$$\sum_{r=1}^{\infty} \frac{2}{(2r-1)(2r+1)}$$
.

- (c) (i) The sequence u_1, u_2, u_3, \dots is given by $u_{n+1} = \sqrt{4 (u_n)^2}$ and $u_1 = a > 0$. For what value of *a* will all of the terms of the sequence be equal to each other?
 - (ii) p, q and r are three numbers in arithmetic sequence. Prove that $p^2 + r^2 \ge 2q^2$.

5. (a) Find the fifth term in the expansion of

$$\left(x^2-\frac{1}{x}\right)^6$$

and show that it is independent of x.

- (b) (i) In a geometric series, the second term is 8 and the fifth term is 27. Find the first term and the common ratio.
 - (ii) Solve $\log_4 x \log_4 (x-2) = \frac{1}{2}$.
- (c) Prove by induction that $2^n \ge n^2$, $n \in \mathbb{N}$, $n \ge 4$.

6. (a) Differentiate
$$\frac{1}{2+5x}$$
 with respect to x.

- (b) (i) Given $y = \tan^{-1} x$, find the value of $\frac{dy}{dx}$ at $x = \sqrt{2}$.
 - (ii) Differentiate, from first principles, $\cos x$ with respect to x.

(c) Let
$$f(x) = x^3 + 6x^2 + 15x + 36$$
, $x \in \mathbf{R}$.

- (i) Show that f'(x) can be written in the form $3[(x+a)^2+b]$, $a,b \in \mathbb{R}$, where f'(x) is the first derivative of f(x).
- (ii) Hence show that f(x) = 0 has only one real root.

- 7. (a) An object's distance from a fixed point is given by $s = 12 + 24t 3t^2$, where s is in metres and t is in seconds. Find the speed of the object when t = 3 seconds.
 - (b) The parametric equations of a curve are:

$$x = 2\theta - \sin 2\theta$$

$$y = 1 - \cos 2\theta$$
, where $0 < \theta < \pi$.

(i) Find $\frac{dy}{dx}$.

(ii) Show that the tangent to the curve at $\theta = \frac{\pi}{6}$ is perpendicular to the tangent at $\theta = \frac{2\pi}{3}$.

(c) Given that
$$x = \frac{e^{2y} - 1}{e^{2y} + 1}$$
,

(c)

(i)

(i) show that
$$e^{2y} = \frac{1+x}{1-x}$$

(ii) show that $\frac{dy}{dx}$ can be expressed in the form $\frac{p}{1-x^q}$, $p,q \in \mathbb{N}$.

8. (a) Find (i)
$$\int \frac{1}{x^2} dx$$
 (ii) $\int \cos 6x dx$.

(b) Evaluate (i)
$$\int_{3}^{6} \frac{dx}{\sqrt{36-x^2}}$$
 (ii) $\int_{0}^{\frac{\pi}{3}} \sin x \cos^3 x dx$.

The graph of the function $f(x) = ax^2 + bx + c$

 $\frac{h}{3}[2ah^2+6c].$

from x = -h to x = h is shown in the diagram.

Show that the area of the shaded region is

$$y$$

 $-h$ $h > x$

Page 5 of 6

Blank Page