Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE EXAMINATION, 2011

MATHEMATICS - HIGHER LEVEL

PAPER 1 (300 marks)

FRIDAY, 10 JUNE - AFTERNOON, 2:00 to 4:30

Attempt SIX QUESTIONS (50 marks each).

WARNING: Marks will be lost if all necessary work is not clearly shown.
Answers should include the appropriate units of measurement, where relevant.

1. (a) Simplify fully $\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4}{x^{2}-1}$.
(b) (i) Prove the factor theorem for polynomials of degree 2.

That is, given that $f(x)=a x^{2}+b x+c$ and k is a number such that $f(k)=0$, prove that $(x-k)$ is a factor of $f(x)$.
(ii) The factor theorem also holds for polynomials of higher degree.

Find the values of n for which $(x+k)$ is a factor of the polynomial $g(x)=x^{n}+k^{n}$, where $k \neq 0$.
(c) $(x-a)^{2}$ is a factor of $2 x^{3}-5 a x^{2}+8 a b x-36 a$, where $a \neq 0$.

Find the possible values of a and b.
2. (a) Solve for $x:|2 x-1| \leq 3$, where $x \in \mathbb{R}$.
(b) $\quad \alpha$ and $\frac{1}{\alpha}$ are the roots of the quadratic equation $3 k x^{2}-18 t x+(2 k+3)=0$, where t and k are constants.
(i) Find the value of k.
(ii) If one of the roots is four times the other, find the possible values of t.
(c) Let $f(x)=\frac{1}{x^{2}-6 x+a}$, where a is a constant.
(i) Prove that if $a=13$, then $f(x)>0$ for all $x \in \mathbb{R}$.
(ii) Prove that if $a=13$, then $f(x)<1$ for all $x \in \mathbb{R}$.
(iii) Find the range of values of a such that $0<f(x)<1$, for all $x \in \mathbb{R}$.
3. (a) Express $\frac{1+2 i}{2-i}$ in the form of $a+b i$, where $i^{2}=-1$.
(b) (i) Find the two complex numbers $a+b i$ such that

$$
(a+b i)^{2}=-3+4 i .
$$

(ii) Hence solve the equation

$$
x^{2}+x+1-i=0
$$

(c) (i) Let A and B be 2×2 matrices, where A has an inverse.

$$
\text { Show that }\left(A^{-1} B A\right)^{n}=A^{-1} B^{n} A \text { for all } n \in \mathbb{N} \text {. }
$$

Let $P=\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)$ and $M=\left(\begin{array}{cc}-5 & 3 \\ -10 & 6\end{array}\right)$.
(ii) Evaluate $P^{-1} M P$ and hence $\left(P^{-1} M P\right)^{n}$.
(iii) Hence, or otherwise, show that $M^{n}=M$, for all $n \in \mathbb{N}$.
4. (a) In an arithmetic sequence, the third term is -3 and the sixth term is -15 . Find the first term and the common difference.
(b) Let $u_{n}=l\left(\frac{1}{2}\right)^{n}+m(-1)^{n}$ for all $n \in \mathbb{N}$.
(i) Verify that u_{n} satisfies the equation $2 u_{n+2}+u_{n+1}-u_{n}=0$.
(ii) If $a_{k}=u_{k}+u_{k+1}$, express a_{k} in terms of k and l.
(iii) Find $\sum_{k=1}^{\infty} a_{k}$, in terms of l.
(iv) For $l>0$, find the least positive integer n for which

$$
\sum_{k=1}^{n} a_{k}>(0 \cdot 99) \sum_{k=1}^{\infty} a_{k}
$$

5. (a) Find the coefficient of x^{8} in the expansion of $\left(x^{2}-1\right)^{10}$.
(b) (i) Solve the equation:

$$
\log _{2} x-\log _{2}(x-1)=4 \log _{4} 2 .
$$

(ii) Solve the equation:

$$
3^{2 x+1}-17\left(3^{x}\right)-6=0
$$

Give your answer correct to two decimal places.
(c) Prove by induction that 9 is a factor of $5^{2 n+1}+2^{4 n+2}$, for all $n \in \mathbb{N}$.
6. (a) Differentiate $\cos ^{2} x$ with respect to x.
(b) The equation of a curve is $y=e^{-x^{2}}$.
(i) Find $\frac{d y}{d x}$.
(ii) Find the co-ordinates of the turning point of the curve.
(iii) Determine whether this turning point is a local maximum or a local minimum.
(c) The function f is defined as $x \rightarrow \frac{2 x}{x+1}$, where $x \in \mathbb{R} \backslash\{-1\}$.
(i) Find the equations of the asymptotes of the curve $y=f(x)$.
(ii) $\quad P$ and Q are distinct points on the curve $y=f(x)$.

The tangent at Q is parallel to the tangent at P.
The co-ordinates of P are $(1,1)$.
Find the co-ordinates of Q.
(iii) Verify that the point of intersection of the asymptotes is the midpoint of $[P Q]$.
7. (a) Find the slope of the tangent to the curve $x^{2}+y^{3}=x-2$ at the point $(3,-2)$.
(b) A curve is defined by the parametric equations
$x=\frac{t-1}{t+1}$ and $y=\frac{-4 t}{(t+1)^{2}}$, where $t \neq-1$.
(i) Find $\frac{d x}{d t}$ and $\frac{d y}{d t}$.
(ii) Hence find $\frac{d y}{d x}$, and express your answer in terms of x.
(c) The functions f and g are defined on the domain $x \in \mathbb{R} \backslash\{-1,0\}$ as follows: $f: x \rightarrow \tan ^{-1}\left(\frac{-x}{x+1}\right)$ and $g: x \rightarrow \tan ^{-1}\left(\frac{x+1}{x}\right)$.
(i) Show that $f^{\prime}(x)=\frac{-1}{2 x^{2}+2 x+1}$.
(ii) It can be shown that $f^{\prime}(x)=g^{\prime}(x)$.

One of the three diagrams A, B, or C below represents parts of the graphs of f and g. Based only on the derivatives, state which diagram is the correct one, and state also why each of the other two diagrams is incorrect.

Diagram A

Diagram B

Diagram C

8. (a) Find $\int\left(x^{3}+\sqrt{x}\right) d x$.
(b) (i) Evaluate $\int_{0}^{2} \frac{x+1}{x^{2}+2 x+2} d x$.
(ii) Evaluate $\int_{0}^{2} \frac{x^{2}+2 x+2}{x+1} d x$.
(c) Use integration methods to establish the formula $A=\pi r^{2}$ for the area of a disc of radius r.

Blank Page

Blank Page

