Question 3

The equations of six lines are given:

(25 marks)

Line	Equation
h	x=3-y
i	2x-4y=3
k	$y = -\frac{1}{4}(2x - 7)$
l	4x - 2y - 5 = 0
m	$x + \sqrt{3}y - 10 = 0$
n	$\sqrt{3}x + y - 10 = 0$

(a) Complete the table below by matching each description given to one or more of the lines.

Description	Line(s)	
A line with a slope of 2.		
A line which intersects the y-axis at $(0, -2\frac{1}{2})$.		
A line which makes equal intercepts on the axes.		
A line which makes an angle of 150° with the positive sense of the x-axis.		
Two lines which are perpendicular to each other.		

(b) Find the acute angle between the lines m and n.

1CH 2013 Paper 2, Q4

Question 4

The circles c_1 and c_2 touch externally as shown.

(25 marks)

(a) Complete the following table:

Circle	Centre	Radius	Equation
c_1	(-3, -2)	2	
c_2			$x^2 + y^2 - 2x - 2y - 7 = 0$

(b) (i) Find the co-ordinates of the point of contact of c_1 and c_2 .

(ii) Hence, or otherwise, find the equation of the tangent, t, common to c_1 and c_2 .

