Let $z_1 = 1 - 2i$, where $i^2 = -1$.

(a) The complex number z_1 is a root of the equation $2z^3 - 7z^2 + 16z - 15 = 0$. Find the other two roots of the equation.

(b) (i) Let $w = z_1 \overline{z_1}$, where $\overline{z_1}$ is the conjugate of z_1 . Plot z_1 , $\overline{z_1}$ and w on the Argand diagram and label each point.

(ii) Find the measure of the acute angle, $\overline{z_1}wz_1$, formed by joining $\overline{z_1}$ to w to z_1 on the diagram above. Give your answer correct to the nearest degree.

(25 marks)

Re(z)

Im(z)

w ·

Answer all six questions from this section.

Question 1

w = $-1 + \sqrt{3}i$ is a complex number, where $i^2 = -1$.

(i) Write w in polar form.

(ii) Use De Moivre's theorem to solve the equation $z^2 = -1 + \sqrt{3}i$. Give your answer(s) in rectangular form.

(b) Four complex numbers z_1 , z_2 , z_3 and z_4 are shown on the Argand diagram. They satisfy the following conditions:

$$\begin{aligned} &z_2 = iz_1 \\ &z_3 = kz_1, \text{ where } k \in \mathbb{R} \end{aligned}$$

$$z_4 = z_2 + z_3.$$

The same scale is used on both axes.

- (i) Identify which number is which, by labelling the points on the diagram.
- (ii) Write down the approximate value of k.

Answer:	
---------	--

Im(z)

page	running