$\underline{\text { Scoil Mhuire V - Hons Maths 17/18 }}$

Problem Set 11 - For Friday $24{ }^{\text {th }}$ March

1. The cubic equation $x^{3}+4 x^{2}+x-26=0$ has one integer root and two complex roots. Find all the roots.
2. Show using the method of completing the square that $2 \mathrm{x}^{2}+5 x-7$ can be expressed as $k\left(x+\frac{a}{b}\right)^{2}-\frac{c}{d}$, where $k, a, b, c, d \in \mathbb{Z}$.
3. The area of an equilateral triangle is $4 \sqrt{3} \mathrm{~cm}^{2}$. Find the length of a side of the triangle.
4. In the triangle $x y z,|\angle x y z|=2 \beta$ and $|\angle x z y|=\beta,|x y|=3$ and $|x y|=5$.
(i) Use this information to express $\sin 2 \beta$ in the form $\frac{a}{b} \sin \beta$ where $a, b, c, d \in \mathbb{N}$
(ii) Hence express $\tan \beta$ in the form $\frac{\sqrt{c}}{d}$ where $c, d \in \mathbb{N}$.

5. The diagram shows a vertical rectangular wall $Q R S T$ of height h on level ground. P is a point on the ground in front of the wall. The angle of elevation of R from P is θ and the angle of elevation of S from P is 2θ. Also it is given that $|P Q|=3|P T|$.
(i) Express h in terms of $\tan \theta$ and x.
(ii) Express h in terms of $\tan 2 \theta$ and x.
(iii) Hence evaluate θ.

6. The graph of $f(x)=a x^{3}+b x^{2}+c x+d$ crosses the x-axis at $x=1, x=-2$ and $x=\frac{1}{2}$. It also crosses the y -axis at the point $(0,6)$. Find the coefficients a, b, c and d.
7. Simplify the following expressions giving your answer in the form $a+b i$ where $a, b \in \mathbb{R}$.
(i) $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{4}$
(ii) $\frac{\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}}{\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}}$
8. In the given diagram, the line PT makes an angle of 63.43° with the x-axis at the point $\mathrm{P}(-5,0)$. The line PT intersects the y-axis at S and $|P S|=|S T|$. The point R is on the x-axis such that $|P O|:|O R|=2: 3$. Find (i) the slope of PT to the nearest integer.
(ii) the equation of PT in the form $y=m x+c$
(iii) the distance PS in surd form.
(iv) the co-ordinates of T .
(v) the co-ordinates of R.
(vi) the area of the triangle PTR

