Problem Set 12 - For Monday

1. Find the values of θ for which $\operatorname{Cos} \theta=\frac{\sqrt{3}}{2}$ where $0^{\circ} \leq \theta \leq 360^{\circ}$.
2. In a triangle $p q r,|\angle p q r|=30^{\circ},|q r|=15$ and $|r p|=5 \sqrt{3}$.
(i) Find two values for $|\angle q p r|$ and sketch the two resulting triangles.
(ii) Calculate the ratio of the areas of the two triangles.
3. Express $\sin A$ in terms of t if $\operatorname{Tan} \theta=\frac{t}{2}$ where $t>0$ and $0^{\circ}<A<90^{\circ}$.
4. (i) The x axis is a tangent to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$. Show that $g^{2}=c$.
(ii) The x axis is a tangent to a circle K at the point $(3,0)$. The point $(-1,4) \in K$.

Find the equation of K.
5. The circle K has equation $x^{2}+y^{2}=100$. Show, by calculation, that the point $A(12,-9)$ lies outside K.
(i) Find the equation of the line $O A$, where O is the origin.
(ii) Find the coordinates of the points where $O A$ intersects K.
6. The following equation is true for all x :

$$
a x^{2}+b x(x-4)+c(x-4)=x^{2}+13 x-20
$$

Find the values of the constants a, b and c.
7. Given that the quadratic equation $x^{2}+2 t x-2 x+2 t+1=0$ has equal roots,
(i) find the value of t where $t>0$.
(ii) use this value of t to evalute the roots.
Answers: 1.150°
2. (i) $60^{\circ}, 120^{\circ}$; (ii) $2: 1$
3. $\operatorname{Sin} \theta=\frac{t}{\sqrt{t^{2}+4}}$
4(ii) $x^{2}+y^{2}-6 x-8 y+9=0$
5. (i) $3 x+4 y=0$;
(ii) $(8,-6),(-8,6)$
6. $\mathrm{a}=3, \mathrm{~b}=-2$ and $\mathrm{c}=5$
7. (i) $t=4$ (ii) $x=-3,-3$

