Problem Set 7 - For Monday $2{ }^{\text {nd }}$ February

1. Find the values of θ for which $\cos \theta=\frac{\sqrt{3}}{2}$ where $0^{\circ} \leq x \leq 360^{\circ}$.
2. In a triangle $p q r,|\angle p q r|=30^{\circ},|q r|=15$ and $|r p|=5 \sqrt{3}$.
(i) Find two values for $|\angle q p r|$ and sketch the two resulting triangles.
(ii) Calculate the ratio of the areas of the two triangles.
3. Express $\sin A$ in terms of t if $\tan A=\frac{t}{2}$ where $t>0$ and $0^{\circ}<A<90^{\circ}$.
4. The diagram shows three points P, Q and R on a circle with centre O and radius 4.8 cm .
(i) Given that $|\angle P O Q|=0.7$ radians, find the area of triangle $P O Q$. Give your answer correct to two decimal places.
(ii) The length of the $\operatorname{arc} R Q$ is $L \mathrm{~cm}$ and the area of sector $R O Q$ is $A \mathrm{~cm}^{2}$. Given that $A=k L$, find the value of k.

5. The following equation is true for all x :

$$
a x^{2}+b x(x-4)+c(x-4)=x^{2}+13 x-20 .
$$

Find the values of the constants a, b and c.
6. Solve the following equation: $2 \log _{3}(x+2)-\log _{3}(x+1)=\log _{3}(x+5)$
7. Given that the quadratic equation $x^{2}+2 t x-2 x+2 t+1=0$ has equal roots,
(i) find the value of t where $t>0$.
(ii) use this value of t to evalute the roots.
8. Solve the following inequalities (i) $x^{2}-x-12 \leq 0, x \in \mathrm{R}$ (ii) $\frac{x+2}{x-1}<3, x \in \mathrm{R}$
9. Draw a graph of the function $3 \sin 2 \mathrm{x}$ in the domain $0^{\circ} \leq \theta \leq 360^{\circ}$. What is its period and range?
10. Light intensity is measured in lux. The light intensity at the surface of a lake is 6000 lux. The light intensity, I lux, a distance s below the surface of the lake is given by

$$
I=A e^{-k s} \quad \text { where } A \text { and } k \text { are constants. }
$$

(i) Write down the value of A.
(ii) If the light intensity is 1000 lux at a depth of 6 m below the surface, find k.
Answers: 1. $30^{\circ}, 330^{\circ}$
2. (i) $60^{\circ}, 120^{\circ}$
(ii) $2: 1$
3. $\operatorname{Sin} \theta=\frac{t}{\sqrt{t^{2}+4}}$
4. (i) $7.42 \mathrm{~cm}^{2}$
(ii) $\mathrm{k}=2.4$
5. $\mathrm{a}=3, \mathrm{~b}=-2$ and $\mathrm{c}=5$
6. $x=\frac{-1}{2}$
7. (i) $t=4$ (ii) $x=-3,-3$
9. $[3,-3] \pi$
10. $A=6000, k=0.299$

