$5^{\text {th }}$ Year - Hons Maths.

Problem Set 7 - The Circle

[2008]

1. (a) A circle with centre $(-3,2)$ passes through the point $(1,3)$. Find the equation of the circle.
(b) A tangent is drawn to the circle $x^{2}+y^{2}=13$ at the point $(2,3)$. This tangent crosses the x-axis at $(k, 0)$. Find the value of k.
(c) A circle passes through the points $A(8,5)$ and $B(9,-2)$. The centre of the circle lies on the line $2 x-3 y-7=0$.
(i) Find the equation of the circle.
(ii) P is a point on the major arc $a b$ of the circle. Show that $|\angle a p b|=45^{\circ}$

[2007]

2. (a) $x^{2}+y^{2}-4 x-6 y+5=0$ and $x^{2}+y^{2}-6 x-8 y+23=0$ are two circles.
(i) Prove that the circles touch internally.
(ii) Find the coordinates of the point of contact of the two circles.
(b) A circle has its centre in the first quadrant. The x-axis is a tangent to the circle at the point $(3,0)$. The circle cuts the y-axis at points that are 8 units apart. Find the equation of the circle.

[2006]
3. (a) $A(-1,-3)$ and $B(3,1)$ are the end-points of a diameter of a circle.

Write down the equation of the circle.
(b) Circle c has centre $(5,-1)$. The line $l: 3 x-4 y+11=0$ is a tangent to c.
(i) Show that the radius of c is 6 .
(ii) The line $x+p y+1=0$ is also a tangent to c. Find two possible values of p.

(c) The circle s is $x^{2}+y^{2}+4 x+4 y-17=0$ and k is the line $4 \mathrm{x}+3 \mathrm{y}=12$.
(i) Show that the line k does not intersect s.
(ii) Find the co-ordinates of the point on s that is closest to k.
[2004]
4. (a) A circle has centre $(-1,5)$ and passes through the point $(1,2)$. Find the equation of the circle.
(b) The point $A(5,2)$ is on the circle $k: x^{2}+y^{2}+p x-2 y+5=0$.
(i) Find the value of p.
(ii) The line $l: x-y-1=0$ intersects the circle k. Find the co-ordinates of the points of intersection.
(c) The y-axis is a tangent to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$.
(i) Prove that $f^{2}=c$.
(ii) Find the equations of the circles that pass through the points $(-3,6)$ and $(-6,3)$ and have the y-axis as a tangent.

