TY Hons Maths - Problem Set 1

1. Simplify the following

(i)
$$\frac{x^2 + 2xy + y^2}{x^2 - y^2} \times \frac{3x - 3y}{4x + 4y}$$
 (ii) $\sqrt{\frac{x^3 + 6x^2 + 9x}{x}}$ (iii) $\frac{x^{-\frac{1}{2}} + x^{\frac{1}{2}}}{x^{-\frac{1}{2}} - x^{\frac{3}{2}}}$

- **2.** Simplify (i) $(a-b)^2 (a+b)^2$ (ii) Hence simplify $(\sqrt{x} \sqrt{y})^2 (\sqrt{x} + \sqrt{y})^2$
- 3. Factorise fully each of the following

(i)
$$5x^2 + 18x - 8$$
 (ii) $x^2y - y^3 + x^3 - xy^2$ (iii) $a^2 - 2ab + b^2 + 4c^2$ (iv) $x^2 + 3px - 4p^2$

4. Use factorisation to solve the following equations:
(i)
$$x^2 + 3x + 2 = 0$$
 (ii) $6x^2 - 5x - 4 = 0$ (iii) $x^2 - 4x = 0$

5. Use the formula to solve the following equations to 2 decimal places.

(i)
$$x^2 + 7x + 9 = 0$$
 (ii) $4x^2 - x - 7 = 0$

6. Show that
$$(a+b)^2 - 2ab = a^2 + b^2$$

7. *Solve, without using a calculator, the following simultaneous equations

$$x+2y+4z=7$$

 $x+3y+2z=1$
 $-y+3z=8$
[$x=3, y=-2, z=2$]

8. Show using multiplication that
$$(x + y)(x^2 - xy + y^2) = x^3 + y^3$$