

OIDEACHAIS EDUCATION AGUS EOLAÍOCHTA AND SCIENCE

Scéim Mharcála

Matamaitic

Scrúduithe Ardteistiméireachta, 2002

Ardleibhéal

Marking Scheme

Mathematics

Leaving Certificate Examination, 2002 Higher Level

An Roinn Oideachais agus Eolaíochta

Leaving Certificate Examination 2002

Marking Scheme

MATHEMATICS

Higher Level

Paper 1

General Instructions

Penalties are applied as follows:

	numerical slips, misreadings blunders, major omissions	(-1) each (-3) each.
Note 1:	The lists of slips, blunders and attempts give exhaustive.	en in the marking scheme are not
Note 2:	A serious blunder, omission or misreading m	nerits the attempt mark at most.
Note 3:	The attempt mark (Att) for a section is the findeductions result in a mark that is less than the is awarded.	
Note 4:	Particular cases and verifications are, in gene only.	eral, awarded the attempt mark
Note 5:	All of the candidate's work, including any th highest scoring solutions are allowed.	at is cancelled, is marked and the

QUESTION 1

Part (a) Part (b)	10 (5, 5) marks 20 (5, 5, 10) marks	Att (2, 2) Att (2, 2, 3)
Part (c)	20 (10, 5, 5) marks	Att (3, 2, 2)
Part (a)	10 (5, 5) marks	Att (2, 2)
1(a) Solve the equation		
	$x = \sqrt{x+2} \; .$	
Quadratic Finish	5 marks 5 marks	Att 2 Att 2
1(a)		
r	$=\sqrt{x+2}$	
	2	
x	$x^{2} = x + 2$	
x x	$x^{2} - x - 2 = 0$	
x x (.	$ x^{2} - x - 2 = 0 (x - 2)(x + 1) = 0 $	
x x (. x	$x^{2} - x - 2 = 0$ (x - 2)(x + 1) = 0 = 2 or x = -1	
x = 2:	$x^{2} - x - 2 = 0$ x - 2)(x + 1) = 0 x = 2 or $x = -1LHS = 2 RHS = \sqrt{2 + 2} = 2$	
x = 2:	$x^{2} - x - 2 = 0$ (x - 2)(x + 1) = 0 = 2 or x = -1	

Blunders (-3)

B1 Indices.

- B2 Factors (once only).
- B3 Root formula (once only).
- B4 Deduction of values from factors or no value.

Slips (-1)

S1 Numerical.

S2 Extra value.

Attempts

A1 x = 2 and no other work merits 2 marks.

Part (b)	Part (b)
----------	--------	----

Quadratic Factor

Att 2

Linea	r Factor	5 marks	Att 2
1(b)	The cubic equation $x^3 - 4x^2$ roots. Find the three roots.	$x^{2} + 9x - 10 = 0$ has one integer root ar	nd two complex

5 marks

10 marks	Att 3
$f(1) = 1 - 4 + 9 - 10 \neq 0$	
$\frac{x^3 - 2x^2}{-2x^2} + 9x$	
$\frac{-2x^{2}+4x}{5x-10}$ $\frac{5x-10}{5x-10}$	
$\Rightarrow x-2=0 \text{or} \qquad x^2-2x+5=0$	$2 + \sqrt{-16}$ $2 + 4i$
Z	$=\frac{2\pm \sqrt{-10}}{2}=\frac{2\pm \pi}{2}=1\pm 2i$
	$f(x) = x^{3} - 4x^{2} + 9x - 10 = 0$ $f(1) = 1 - 4 + 9 - 10 \neq 0$ $f(2) = 8 - 16 + 18 - 10 = 0 \Rightarrow (x - 2) \text{ is factor}$ $-2 \overline{\smash{\big)}x^{3} - 4x^{2} + 9x - 10}$ $\frac{x^{3} - 2x^{2}}{-2x^{2} + 9x}$ $-2x^{2} + 9x$ $\frac{-2x^{2} + 4x}{5x - 10}$ $(x) = 0 \qquad \Rightarrow (x - 2)(x^{2} - 2x + 5) = 0$

Blunders (-3)

- B1 Test for root.
- B2 Deduction of factor from root.
- B3 Indices.
- B4 Root formula (once only).
- B5 Deduction of root from factor or no deduction.

Slips (-1)

S1 Numerical.

S2 Not changing sign when subtracting in division.

Worthless

W1 $x(x^2 - 4x + 9) = 10$, with or without further work.

Note If there is a remainder after division or incomplete division, candidate can only get Att, at most, for roots.

Part (c)	20 (10, 5, 5) marks	Att (3, 2, 2)
1(c) $(p+r-t)x^2 + 2rx + ($	(t+r-p)=0 is a quadratic equation	ion, where <i>p</i> , <i>r</i> , and <i>t</i> are integers.
Show that		
(i) the roots are		
(ii) one of the r	oots is an integer.	
b^2-4ac	10 marks	Att 3
Perfect square	5 marks	Att 3 Att 2
Finish	5 marks	Att 2
1(c)		
J () () ()	$(r-t)x^{2} + 2rx + (t+r-p) = 0$	
Ľ	$(t-p)]x^{2} + 2rx + [r + (t-p)] = 0$	
Let $(t-p)$ =		
	$(r-k)x^{2} + 2rx + (r+k) = 0$	
In applying quadratic form	ula, $b^2 - 4ac = (2r)^2 - 4(r + 4c)^2 - 4($	
	$=4r^2-4(r^2+$	/
	$= 4r^2 - 4r^2 +$ $= 4k^2$	$-4k^2$
	177	\Rightarrow perfect square
		ic has rational roots
Roots: $x = \frac{-2r \pm \sqrt{r}}{r}$	$\frac{\sqrt{[2(t-p)]^2}}{(t+r-t)} = \frac{-2r \pm 2(t-p)}{2(p+r-t)} = -\frac{1}{2(p+r-t)}$	$-r\pm(t-p)$
Koots. $x = \frac{1}{2(p)}$	(r-t) $ (p+r-t)$ $-$	p+r-t
r t n	$\begin{pmatrix} n+r & t \end{pmatrix}$	r t p
$\Rightarrow x = \frac{-r+t-p}{p+r-t}$	$= \frac{-(p+r-t)}{p+r-t} = -1 \text{ (integer) } dt$	or $x = \frac{-r - t + p}{p + r - t}$
-	1	P · · · ·
\Rightarrow the roots are -1	and $\frac{1}{p+r-t}$.	
	or	
1(c)		
$f'(x) = (r-a)x^{2} + f(0) = 0 + 0 + (r+a)x^{2} + 0$	2rx + (r+a) where $a = t - p$)
f(0) = 0 + 0 + (r + a) $f(1) = (r - a) + 2r - a$		
f(-1) = r - a - 2r		
	is a root of $f(x) = 0 \Rightarrow$ one root	t is an integer.
Let α = other root		C
Product of roots =	$\frac{r+a}{d} = (\alpha)(-1)$	
	r u	
\Rightarrow	$\alpha = \frac{-r-a}{r-a} = \frac{-r-t+p}{r-t+p} \dots o$	ther root.
	, u , i p	

4

1(c)

$$[(p+r-t)x + (t+r-p)][x+1] = 0$$

x = -1 or $x = \frac{-t-r+p}{p+r-t}$

Blunders (-3)

- B1 Indices.
- B2 Root formula (once only).
- B3 Test for root.
- B4 Sum or product of roots.
- B5 Factors (once only).

Worthless

W1 When (i) treated as sum and product of roots.

Note Cannot get marks for finish if not perfect square.

QUESTION 2

Part (a) Part (b) Part (c)	10 (5, 5) marks 20 (5, 5, 10) marks 20 (10, 5, 5) marks	Att (2, 2) Att (2, 2, 3) Att (3, 2, 2)
Part (a)	10 (5, 5)marks	Att (2, 2)
2(a) Solve, without us	ing a calculator, the following sime x + 2y + 4z = 7 x + 3y + 2z = 1 -y + 3z = 8.	ultaneous equations:
Elimination x Finish	5 marks 5 marks	Att 2 Att 2
(ii) $x - (iii)$ (i) $x + 2y + 4$ (ii) $x + 3y + 2$		(iv) -y + 2z = 6 (iii) -y + 3z = 8 $-z = -2$ $z = 2$
(i) $x + 2y + 4z$ x - 4 + 8 = 7 x = 3	1	-y + 3z = 8 -y + 6 = 8 -y = 2 y = -2

Blunders (-3)
B1 Not finding 2nd unknown or 3rd unknown (having found 1st).
B2 Multiplying one side of equation only.

Slips (-1) Numerical. **S**1

Worthless (0) W1 Trial and error.

Note If *y* or *z* eliminated, must do two cancellations for 5 marks.

Part (b)(i)	10 (5, 5) marks	Att (2, 2)
2(b)(i)	Find the range of values of $x \in \mathbf{R}$ for which	
	$x^2 + x - 20 \le 0.$	

Roots/complete square	5 marks	Att 2
Finish	5 marks	Att 2
2(b)(i)		
$x^{2} + x -$		
(x+5)(x	(x-4) = 0 or $x = 4$	
x = -5	or $x = 4$	
-5	4	
	$-5 \le x \le 4$	

or

Blunders (-3)

- B1 Inequality sign.
- B2 Indices.
- B3 Factors (once only).
- B4 Root formula (once only).
- B5 Deduction root from factor.
- B6 Range not stated.
- B7 Incorrect range.
- B8 Completing square.

Slips (-1)

S1 Numerical.

Part	(b)(ii)	10 marks	Att 3
(ii)	Let $g(x)$	$= x^n + 3$, for all $x \in \mathbf{R}$, where $n \in \mathbf{N}$.	
	Show the	at if <i>n</i> is odd then $g(x) + g(-x)$ is constant.	

Part (b)(ii)	10 marks	Att 3
2(b)(ii)		
	$g(x) = x^n + 3 \qquad n \text{ odd}$	
	$g(-x) = (-x)^n + 3 = -x^n + 3$	
	$g(x) + g(-x) = (x^{n} + 3) + (-x^{n} + 3)$	
	= 6	

Blunders (-3)B1 Indices.

Slips (-1)**S**1 Numerical.

Attempts

Particular odd value of *n*. A1

A2 *x* in answer.

Worthless (0)

W1 Particular values of *x*.

Part (c)

20 (10, 5, 5) marks Att (3, 2, 2) **2(c)(i)** Show that if the roots of $x^2 + bx + c = 0$ differ by 1, then $b^2 - 4c = 1$. (ii) The roots of the equation $x^2 + (4k-5)x + k = 0$ are consecutive integers. Using the result from part (i), or otherwise, find the value of k and the roots of the equation.

$b^2 - 4c = 1$	10 marks	Att 3
Values k	5 marks	Att 2
Finish	5 marks	Att 2
2(c)(i)		
	$x^2 + bx + c = 0$	
	$\text{Roots} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$	
	$\Rightarrow \frac{-b + \sqrt{b^2 - 4c}}{2} \text{and} \frac{-b - \sqrt{b^2 - 4c}}{2}$	are roots
	$f_2 = -\frac{b}{2} + \frac{\sqrt{b^2 - 4c}}{2} + \frac{b}{2} + \frac{\sqrt{b^2 - 4c}}{2}$	
\Rightarrow	$1 = \sqrt{b^2 - 4c}$ $1 = b^2 - 4c$	
\Rightarrow	$1 = b^2 - 4c$	

or

2(c)(i)
Let
$$\alpha$$
 and $(\alpha + 1)$ be the two consecutive roots
 $x^2 - (-b)x + (c) = 0$
 $x^2 - [2\alpha + 1]x + [\alpha(\alpha + 1)] = 0$
 $\Rightarrow b = -(2\alpha + 1)$ and $c = \alpha^2 + \alpha$
 $b^2 - 4c = [-(2\alpha + 1)]^2 - 4(\alpha^2 + \alpha)$
 $= 4\alpha^2 + 4\alpha + 1 - 4\alpha^2 - 4\alpha$
 $\Rightarrow b^2 - 4c = 1$

2(c)(ii)

$$x^{2} + (4k - 5)x + k = 0$$

$$x^{2} + bx + c = 0$$

$$\Rightarrow b = (4k - 5) \text{ and } c = k$$

From (i), $b^{2} - 4c = 1 \Rightarrow (4k - 5)^{2} - (4k) = 1$

$$16k^{2} - 40k + 25 - 4k - 1 = 0$$

$$16k^{2} - 44k + 24 = 0$$

$$4k^{2} - 11k + 6 = 0$$

$$(4k - 3)(k - 2) = 0$$

$$k = \frac{3}{4} \text{ or } k = 2$$

$$k = 2: x^{2} + 3x + 2 = 0$$

$$(x + 1)(x + 2) = 0$$

$$x = -1 \text{ or } x = -2 \Rightarrow k = 2 \text{ is required value and roots are } -1 \text{ and } -2.$$

$$k = \frac{3}{4}: x^{2} - 2x + \frac{3}{4} = 0 \text{ does not have integral roots } \Rightarrow k \neq \frac{3}{4}.$$

- Indices. B1
- B2 Roots not α and $\alpha \pm 1$.
- Statement of quadratic equation. B3
- B4 Not like to like.
- Expansion $(m+n)^2$. B5
- B6
- Factors (once only). Root formula (once only). **B**7
- Deduction of value from factor, or no value from factor. **B**8
- Extra value of *k* only. B9
- B10 Not finding roots.

Slips (-1)

Numerical. **S**1

QUESTION 3

Part (a)	10 (5, 5) marks	Att (2, 2)
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)	20 (5, 10, 5) marks	Att (2, 3, 2)

Part (a)	10 (5, 5) marks	Att (2, 2)
3(a)		
Express –	$1 + \sqrt{3}i$ in the form $r(\cos\theta + i\sin\theta)$, where $i^2 =$	-1.

r Ө	5 marks 5 marks	Att 2 Att 2
3(a)	$z = -1 + i\sqrt{3}$	
	$r = z = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{4}$	$\frac{z}{8} + \sqrt{3}$
	$r = 2$ $\tan \alpha = \frac{\sqrt{3}}{1} = \sqrt{3}$	$\sqrt{3}$ θ
	$\Rightarrow \alpha = 60^{\circ} \text{ and } \theta = \frac{2\pi}{3}$	-1
	$z = 2\left[\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right] = 2\left(\cos 120^\circ + i\sin 120^\circ\right)$	

Blunders (-3)

- Argument. Modulus. B1
- B2
- Trigonometric definition. B3
- Indices. B4
- B5 i.

Slips (-1) S1 Nu

- Numerical.
- S2 Trigonometric values.

Part (b)(i)	10 (5, 5) marks	Att (2, 2)
3(b)(i)	Given that $z = 2 - i\sqrt{3}$, find the real number t such	h that $z^2 + tz$ is real.
$\left(z^2 + tz\right)$ value t	5 marks 5 marks	Att 2 Att 2
3(b)(i)	$z = 2 - i\sqrt{3}$	
	$z^{2} = (2 - i\sqrt{3})^{2} = 4 - 4\sqrt{3}i - 3 = 1 - (4\sqrt{3})i$ $z^{2} + tz = [1 - i(4\sqrt{3})] + t[2 - i\sqrt{3}] = k + (0)i$ $(1 + 2t) + [-4\sqrt{3} - t\sqrt{3}]i = k + (0)i$ $\Rightarrow -4\sqrt{3} - t\sqrt{3} = 0$ t = -4	

Blunders (-3) B1 i $(a+b)^2$. B2 B3 Indices.

Not real to real etc. B4

Part (b)(i	i) 10 (5, 5) marks	Att (2, 2)
3(b)(ii)	w is a complex number such that	
	$w\overline{w} - 2iw = 7 - 4i,$	
	where \overline{w} is the complex conjugate of w.	
	Find the two possible values of <i>w</i> . Express each in the form $p + qi$, where $p, q \in R$.	

<i>p</i> Express	5 marks 5 marks	Att 2 Att 2	
3(b)(ii)	$w\overline{w} - 2iw = 7 - 4i$		
	w = p + qi (p + qi)(p - qi) - 2i(p + qi) = 7 + (-4)i		
	$(p+qi)(p-qi) - 2i(p+qi) = 7 + (-4)i$ $p^{2} + q^{2} - 2pi + 2q = 7 + (-4)i$		
	$p^{2} + q^{2} - 2pi + 2q = 7 + (-4)i$ $(p^{2} + q^{2} + 2q) + (-2p)i = 7 + (-4)i$		
	$\Rightarrow -2p = -4$		
	p = 2		
	$p^2 + q^2 + 2q = 7$		
	$4 + q^2 + 2q = 7$		
	$q^2 + 2q - 3 = 0$		
	(q+3)(q-1) = 0		
	q = -3 or $q = 1$ $p + qi = 2 - 3i$	or $2+i$.	

- B1 Conjugate.
- B2 *i*
- B3 Indices.
- B4 Not real to real etc.
- B5 Factors once only.
- B6 Root formula once only.
- B7 Value from factor.
- B8 Not in correct form (once only).

Slips (-1)

S1 One value of *w* only.

Worthless

W1 \overline{w} not a complex number.

Part (c) 20 (5, 10, 5) marks	Att (2, 3, 2)
3(c)	The following three statements are true whenever x and y are rea • $x + y = y + x$	al numbers:
	 xy = yx If xy = 0 then either x = 0 or y = 0. 	
	Investigate whether the statements are also true when x is the matrix $\begin{pmatrix} 3 & -1 \\ -6 & 2 \end{pmatrix}$ and y is the matrix $\begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$.	

x + y	5 marks	Att 2
xy = yx	10 marks	Att 3
xy = 0	5 marks	Att 2
3(c)	$x = \begin{pmatrix} 3 & -1 \\ -6 & 2 \end{pmatrix} \qquad \qquad y = \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$	
(i)	$x + y = \begin{pmatrix} 5 & 2\\ 0 & 11 \end{pmatrix}$	
	$y + x = \begin{pmatrix} 5 & 2 \\ 0 & 11 \end{pmatrix} \Rightarrow x + y = y + x \Rightarrow \text{ true}$	
(ii)	$x.y = \begin{pmatrix} 3 & -1 \\ -6 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	
	$y.x = \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -6 & 2 \end{pmatrix} = \begin{pmatrix} -12 & 4 \\ -36 & 12 \end{pmatrix}$ $x.y \neq y.x \Rightarrow \text{false}$	
(iii)	$x.y = 0$ but $x \neq 0$ and $y \neq 0 \Rightarrow$ false	

B1 Incorrect deduction or no deduction.

Slips (-1)

- S1 Each incorrect element matrix.
- S2 Numerical.

Worthless

W1 Incorrect deduction and no work in xy = 0.

Part (a)	10 marks	Att 3
Part (b)	20 (5, 10, 5) marks	Att (2, 3, 2)
Part (c)	20 (5, 10, 5) marks	Att (2, 3, 2)
Part (a)	10 marks	Att 3

QUESTION 4

Find, in terms of *n*, the sum of the first *n* terms of the geometric series $3 + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \dots$

S_n of G.P	10 marks	Att 3
4(a)		
	$S_n = 3 + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \dots + \frac{3}{2^{n-1}}$	
	$G.P: a = 3 \qquad r = \frac{1}{2}$	
	$S_{n} = \frac{a(1-r^{n})}{(1-r)} = \frac{3\left[1-\left(\frac{1}{2}\right)^{n}\right]}{1-\frac{1}{2}} = 6\left[1-\left(\frac{1}{2}\right)^{n}\right]$	

Blunders (-3)

4(a)

- B1 Formula S_n .
- B2 Incorrect 'a'.
- B3 Incorrect 'r'.
- B4 Incorrect number of terms.
- B5 Indices.

Slips (-1) S1 Numerical.

Attempts

A1 S_{∞}

Worthless (0) W1 Sum of A.P.

Part	(b)	20 (5, 10, 5) marks	Att (2, 3, 2)
4(b)	(i)	Show that	
		$\frac{2}{k(k+2)} = \frac{1}{k} - \frac{1}{k+2} \text{ for all } k \in \mathbf{R}, \ k \neq 0, -2.$	
	(ii)	Evaluate, in terms of <i>n</i> , $\sum_{k=1}^{n} \frac{2}{k(k+2)}$.	
	(iii)	Evaluate $\sum_{k=1}^{\infty} \frac{2}{k(k+2)}$.	

(i) (ii)	5 marks 10 marks	Att 2 Att 3
(iii) 4(b)(i	5 marks	Att 2
	To prove $\frac{2}{k(k+2)} = \frac{1}{k} - \frac{1}{k+2}$	
	LHS = $\frac{1}{k} - \frac{1}{k+2} = \frac{(k+2)-k}{k(k+2)} = \frac{2}{k(k+2)} = \text{RHS}$	

4(b)(i)

$$\frac{2}{k(k+2)} = \frac{a}{k} + \frac{b}{k+2}$$

$$2 = a(k+2) + b(k)$$

$$(0)k + (2) = (a+b)k + (2a)$$
Since this is true for all real $k \Rightarrow a+b=0$ and $2 = 2a$

$$\Rightarrow a = 1$$

$$a+b=0$$

$$1+b=0$$

$$\Rightarrow b = -1$$

$$\Rightarrow \frac{2}{k(k+2)} = \frac{1}{k} - \frac{1}{k+2}$$
, as required.

$$\begin{aligned} \mathbf{4(b)(ii)} \\ \sum_{k=1}^{n} \frac{2}{k(k+2)} &= S_n = U_n + U_{n-1} + U_{n-2} + \dots + U_1 \\ U_n &= \frac{2}{n(n+2)} &= \frac{4}{n} - \frac{1}{n+2} \\ U_{n-1} &= \frac{2}{(n-1)(n+1)} &= \frac{1}{n-1} - \frac{1}{n+1} \\ U_{n-2} &= \frac{2}{(n-2)(n)} &= \frac{1}{n-2} - \frac{1}{n} \\ U_{n-3} &= \frac{2}{(n-3)(n-1)} &= \frac{1}{n-3} - \frac{1}{n-1} \\ \vdots &\vdots &\vdots \\ U_4 &= \frac{2}{4.6} &= \frac{1}{4} - \frac{1}{4} \\ U_3 &= \frac{2}{3.5} &= \frac{1}{3} \\ U_2 &= \frac{2}{2.4} &= \frac{1}{2} - \frac{1}{4} \\ U_1 &= \frac{2}{1.3} &= \frac{1}{1} - \frac{1}{3} \\ S_n &= 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} &= \frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2} \\ &= \frac{1}{[1+\frac{1}{2}+\sum_{k=3}^{n}\frac{1}{k}] - \left[\sum_{k=3}^{n}\frac{1}{k} + \frac{1}{n+1} + \frac{1}{n+2} \\ &= \frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2} \end{aligned}$$

4(b)(iii)	Taking the limit as	$n \rightarrow \infty$	gives	$\sum_{k=1}^{\infty} \frac{1}{k!}$	$\frac{2}{(k+2)}$	$=\frac{3}{2}$.
-----------	---------------------	------------------------	-------	------------------------------------	-------------------	------------------

- B1 Not like to like.
- B2 Cancellation must be shown or implied.
- B3 k = 0 or k = -2.
- B4 Term, or terms, omitted.
- B5 Blunder in deduction of S_{∞} from S_n .

B6 S_k

Slips (-1)

S1 Numerical.

Note Must show 3 terms at start and 2 at finish or vice versa.

Part (c)	20 (5, 10, 5)marks	Att (2, 3, 2)
4(c) Three numbers are in arithmetic sequence. Their sum is 27 and their product is 704. Find the three numbers.		
Equations Quadratic Numbers	5 marks 10 marks 5 marks	Att 2 Att 3 Att 2
Numbers 5 marks Att 2 4(c) $(a-d), a, (a+d) \text{ are in arithmetic sequence}$ Sum: $3a = 27 \Rightarrow a = 9$ Product: $(a-d).(a).(a+d) = 704$ $a(a^2 - d^2) = 704$ $9(81 - d^2) = 704$ $81 - d^2 = \frac{704}{9}$ $\frac{729 - 704}{9} = d^2$ $d^2 = \frac{25}{9} = \left(\frac{5}{3}\right)^2$ $d = \pm \frac{5}{3}$		
	$\Rightarrow \frac{32}{3}, 9, \frac{22}{3} \text{ are the three numbers.}$	

or

4(c)
$$a, (a + d), (a + 2d)$$
 are in arithmetic sequence
Sum $3a + 3d = 27$
 $a + d = 9 \Rightarrow d = 9 - a$
Product: $(a)(a + d)(a + 2d) = 704$
 $9a(a + 2d) = 704$
 $9a(a + 2d) = 704$
 $9a(a + 2d) = 704$
 $9a(18 - a) = 704$
 $9a^2 - 162a + 704 = 0$
 $(3a - 22)(3a - 32) = 0$
 $\Rightarrow a = \frac{22}{3} \text{ or } a = \frac{32}{3}$
 $d = 9 - a$
 $= \frac{27}{3} - \frac{22}{3}$
 $= \frac{5}{3}$
 $a = -\frac{5}{3}$
 $a = -\frac{5}{3}$
 $a = \frac{32}{3}, 9, \frac{22}{3}$ are the three numbers.

or

4(c) Let the three numbers be x, y, z
A.P:
$$z - y = y - x$$

 $x - 2y + z = 0$(i)
Sum: $x + y + z = 27$(ii)
Product: $xyz = 704$
(i) $x - 2y + z = 0$
(ii) $x + y + z = 27$
 $y = 9$
(ii) $x + y + z = 27$
 $x + z = 18$ $\Rightarrow z = (18 - x)$
(iii) $xyz = 704$
 $9xz = 704$
 $9x(18 - x) = 704$
 $9x^2 - 162x + 704 = 0$
Using factors $(3x - 22)(3x - 32) = 0$
 $x = \frac{22}{3}$ or $x = \frac{32}{3}$ etc......

or			
Using formula $9x^2 - 162x + 704 = 0$			
$x = \frac{162 \pm \sqrt{(162)^2 - 25344}}{18} = \frac{162 \pm \sqrt{9}}{18}$	$=\frac{192}{18}$ or	$\frac{132}{18}$ $\frac{22}{3}$ etc	

- B1 Indices.
- Statement of 3 consecutive terms. B2
- B3
- B4
- Factors (once only). Root formula (once only). Deduction of value from factor. B5

	QUESTION 5		
Part (a)	10 (5, 5) marks	Att (2, 2)	
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)	
Part (c)	20 (5, 5, 10) marks	Att (2, 2, 3)	

Part	(a)	10 (5, 5) marks	Att (2, 2)
5(a)	Find the value of x in each	case:	
	(i) $\frac{8}{2^x} = 32$		
	(ii) $\log_9 x = \frac{3}{2}$.		

(i)	5 marks		
(ii) 5(a)(i)	5 marks	Att 2	
5(a)(ii)	$\frac{8}{2^{x}} = 32$ $2^{3-x} = 2^{5}$ $\Rightarrow 3 - x = 5$ $x = -2$ $\log_{9} x = \frac{3}{2}$ $x = (9)^{\frac{3}{2}} = 27$		

Blunders (-3) B1 Indices.

B2 Logs.

Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
5(b)			
	The f	first three terms in the binomial expansion of $(1 + ax)^n$	are $1 + 2x + \frac{7x^2}{4}$.
	(i)	Find the value of <i>a</i> and the value of <i>n</i> .	
	(ii)	Hence, find the middle term in the expansion.	
	(11)	Thenee, find the findule term in the expansion.	

Expansion Equation in one variable Values (ii)	5 marks 5 marks 5 marks 5 marks	Att 2 Att 2 Att 2 Att 2 Att 2
5(b) $(1+ax)^n = 1+2x+ax^n$		
	$ax) + \binom{n}{2}(ax)^2 + \dots$	
= 1 + nax	$+\frac{n(n-1)}{2} \cdot a^2 \cdot x^2 + \dots \Rightarrow na = 2$ and	$\frac{n(n-1)\cdot a^2}{2} = \frac{7}{4}$
(i): $na = 2 \Rightarrow a$	$=\frac{2}{n}$	
(ii): $\frac{n(n-1)\cdot a^2}{2}$	$=\frac{7}{4}$	
$\frac{n(n-1)\cdot 4}{2\cdot n^2} =$	$=\frac{7}{4}$	
$\frac{2(n-1)}{n} = \frac{7}{4}$		
8n-8=7n	\Rightarrow $n = 8$	
From (i): $a = \frac{2}{n} = \frac{1}{4} \Longrightarrow \left(\frac{1}{2} + \frac{1}{2} \right)$	$\left(1+\frac{x}{4}\right)^8$ is the expression that has been	n expanded
There are 9 terms in expans	sion of $\left(1 + \frac{x}{4}\right)^8 \Rightarrow U_5$ is middle term	
$U_5 = \binom{8}{4} \left(\frac{x}{4}\right)^4 = \frac{8}{1} \cdot \frac{1}{1}$	$\frac{7 \cdot 6 \cdot 5}{2 \cdot 3 \cdot 4} \cdot \frac{x^4}{256} = \frac{35x^4}{128}$	
	or	
$\left(1+\frac{x}{2}\right)^{8} = 1+\binom{8}{(ax)}+\binom{8}{2}$	$(ax)^{2} + {8 \choose ax}^{3} + {8 \choose ax}^{4} + \dots$	

$$\begin{pmatrix} 1+\frac{x}{4} \end{pmatrix}^8 = 1 + \binom{8}{1} (ax) + \binom{8}{2} (ax)^2 + \binom{8}{3} (ax)^3 + \binom{8}{4} (ax)^4 + \dots \\ \Rightarrow \quad U_5 = \binom{8}{4} \binom{x}{4}^4 = \frac{35x^4}{128}$$

- B1 Binomial expansion (once only).
- B2 Indices.

B3 Value of
$$\binom{n}{r}$$
 or no value of $\binom{n}{r}$.

- B4 Not like to like.
- B5 Incorrect middle term.

Attempts

A1 Correct trial and error.

Note When *n* odd accept either of the two middle terms.

20 (5, 5, 10) marks	Att (2, 2, 3)
$x + x^{2} + x^{3} + + x^{n} = \frac{x(x^{n} - 1)}{x^{n}}$ where	$x \neq 1$.
x-1	
5 marks	Att 2
5 marks	Att 2
10 marks	Att 3
$x + x^{2} + x^{3} + \dots + x^{n} = \frac{x(x^{n} - 1)}{x - 1}$	
$\frac{x(x^{1}-1)}{x-1} = \frac{x(x-1)}{x-1} = x$ where	e $x \neq 1$
1) is true, i.e. $x + x^2 + x^3 + x^4 + \dots$	$+x^{k}+x^{k+1}=rac{x(x^{k+1}-1)}{x-1}$
$x^{2} + x^{3} + x^{4} + \dots + x^{k} + x^{k+1} = \frac{x(x)}{x}$	$(k-1) - 1 + x^{k+1}$ from *
$=\frac{x^{k+1}}{2}$	$\frac{1-x+x^{k+1}(x-1)}{(x-1)}$
$=\frac{x^{k+1}}{k}$	$\frac{1-x+x^{k+2}-x^{k+1}}{x-1}$
x^{k+2}	$x^2 - x$
$=$ $\frac{1}{x}$	-1
$=\frac{x(x)}{x}$	$\frac{k+1}{2} - 1$
(<i>z</i> −1)
	ion that, for any positive integer <i>n</i> , $x + x^{2} + x^{3} + \dots + x^{n} = \frac{x(x^{n} - 1)}{x - 1} \text{ where}$ 5 marks 5 marks 10 marks $x + x^{2} + x^{3} + \dots + x^{n} = \frac{x(x^{n} - 1)}{x - 1}$ $\frac{x(x^{1} - 1)}{x - 1} = \frac{x(x - 1)}{x - 1} = x \text{ where}$ He, i.e. $x + x^{2} + x^{3} + x^{4} + \dots + x^{k}$ (1) is true, i.e. $x + x^{2} + x^{3} + x^{4} + \dots + x^{k}$ $x^{2} + x^{3} + x^{4} + \dots + x^{k} + x^{k+1} = \frac{x(x - 1)}{x - 1}$

Blunders (-3) B1 Indices.

B1 mateces B2 $n \neq 1$.

Attempts

A1 Particular values of *x*.

Note Must prove n = 1 (not sufficient to state P(n) true for n = 1).

QUESTION 6

Part (a)	10 marks	Att 3
Part (b)	20 (10, 10) marks	Att (3, 3)
Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)

Part (a)10 marksAtt 36(a)Differentiate $(x^4 + 1)^5$ with respect to x.

Blunders (-3)

B1 Differentiation.

B2 Indices.

Attempts

A1 Error in differentiation formula.

Worthless (0)

W1 Integration.

Note Simplification of derivative not required.

Part (b)(i)	10 marks	Att 3
6(b)(i)	Prove, from first principles, the addition rule:	
	if $f(x) = u(x) + v(x)$ then $\frac{df}{dx} = \frac{du}{dx} + \frac{dv}{dx}$.	

Part (b)(i)	10 marks	Att 3
6(b)(i)		
f(x) = u(x) + v(x)		
f(x+h) = u(x+h)	(h) + v(x+h)	
f(x+h) - f(x) =	[u(x+h)-u(x)] + [v(x+h)-v(x)]	
$\frac{f(x+h) - f(x)}{h} =$	$\left[\frac{u(x+h)-u(x)}{h}\right] + \left[\frac{v(x+h)-v(x)}{h}\right]$	
$\lim \int f(x+h) - \frac{1}{2}$	$\frac{f(x)}{h} = \lim_{h \to 0} \left[\frac{u(x+h) - u(x)}{h} \right] + \frac{\ln h}{h}$	m $\left\lceil v(x+h) - v(x) \right\rceil$
$h \rightarrow 0$ h	$\boxed{\qquad} \begin{bmatrix} - & h \end{bmatrix}^{-} h \rightarrow 0 \begin{bmatrix} & - & h \end{bmatrix}^{+} h = -$	$\rightarrow 0 \left[\begin{array}{c} \hline h \end{array} \right]$
	$\frac{df}{dt} - \frac{du}{dt} + \frac{dv}{dt}$	
	dx dx dx dx	

$$6(b)(i) y = u + v where y = f(x), u = u(x), v = v(x)$$

$$y + \Delta y = (u + \Delta u) + (v + \Delta v)$$

$$\Delta y = \Delta u + \Delta v$$

$$\frac{\Delta y}{\Delta x} = \frac{\Delta u}{\Delta x} + \frac{\Delta v}{\Delta x}$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

B1 No limit shown or implied or no indication $\rightarrow 0$.

Attempts

A1 Some effort at f(x+h).

Worthless

W1 No 1st principles.

Note Limit appearing once is acceptable.

Part (b)(ii)	10 marks	Att 3	
6(b)(ii)	Given $y = 2x - \sin 2x$, find $\frac{dy}{dx}$.		
	Give your answer in the form $k \sin^2 x$, where $k \in \mathbb{Z}$.		

Part (b)(ii)	10 marks	Att 3
6(b)(ii)	$y = 2x - \sin 2x$	
	$\frac{dy}{dx} = 2 - 2\cos 2x$	
	$= 2(1 - \cos 2x)$	
	$= 2\left(2\sin^2 x\right)$	
	$=4\sin^2 x$	

Blunders (-3)

- B1 Differentiation.
- B2 Trigonometric formula.
- B3 Not in required form.

Attempts

A1 Error in differentiation formula.

Worthless (0)

W1 Integration.

	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
6(c) The function $f(x) = ax^3 + $ inflection at (1, 0).	$bx^2 + cx + d$ has a maximum po	bint at $(0, 4)$ and a point of
Find the values of <i>a</i> , <i>b</i> , <i>c</i> a	nd <i>d</i> .	
Using 1^{st} given point Using 2^{nd} given point Using $f'(x) = 0$ Using $f''(x) = 0$ and finish	5 marks 5 marks 5 marks 5 marks	Att 2 Att 2 Att 2 Att 2
6(c) $y = ax^3 + b$ Max at $(0,4) \Rightarrow y = 4$ at $x = 0$	$cx^{2} + cx + d$ $\Rightarrow d = 4$	(2)
Point of inflection at $(1,0) \Rightarrow y = 0$ 0 = a + b + b + b = 0 Max at $x = 0 \Rightarrow \frac{dy}{dx} = 0$ at $x = 0$	0 at $x = 1$ $c + d \Rightarrow a + b + c = -4$	(<i>ii</i>)
$y = ax^{3} + bx^{2} + \frac{dy}{dx} = 3ax^{2} + 2bx$		(iii)
		(<i>iv</i>)
Combining (ii), (iii) and (iv):	a+b+c = -4 a-3a+0 = -4 -2a = -4 $a = 2 \implies b = -4$	= -6
Hence, $a = 2$: $b = -6$:	c = 0 : $d = 4$ [giving	$f(x) \cdot 2x^3 - 6x^2 + 41$

B1 Differen B2 Indices.

Slips (-1) S1 Numerical.

Worthless (0) W1 No f''(x).

Note Equations must come from work above.

QUESTION 7

Part (a)	10 marks	Att 3
Part (b)	20 (10, 5, 5) marks	Att (3, 2, 2)
Part (c)	20 (10, 5, 5) marks	Att (3, 2, 2)

Part (a)	10 marks	Att 3	
7(a)	Find the slope of the tangent to the curve		
	$9x^2 + 4y^2 = 40$ at the point (2, 1).		

Part (a)	10 marks	Att 3
7(a)		
	$9x^2 + 4y^2 = 40$	
	$18x + 8y\frac{dy}{dx} = 0$	
	$8y\frac{dy}{dx} = -18x$	
	$\frac{dy}{dx} = \frac{-18x}{8y} = \frac{-9x}{4y}$	
At $x = 2$, $y =$	= 1 $m = \frac{dy}{dx} = \frac{-9(2)}{4(1)} = \frac{-9}{2}.$	

Blunders (-3)

- B1 Differentiation.
- B2 Incorrect value of *x* or no value of *x*.
- B3 Incorrect value of *y* or no value of *y*.
- B4 Indices.

Slips (-1)

S1 Numerical.

Attempts

A2
$$\frac{dy}{dx} = 18x + 8y\frac{dy}{dx}$$
 and uses the two $\left(\frac{dy}{dx}\right)$ terms.

Worthless (0)

- W1 Integration.
- W2 No differentiation.

Part (b)(i)	10 marks	Att 3
7(b)(i)	Given that $y = \sin^{-1} 10x$, evaluate $\frac{dy}{dx}$ w	when $x = \frac{1}{20}$.
Part(b)(i)	10 marks	Att 3
7(b)(i)	$y = \sin^{-1}(10x)$	
At $x = \frac{1}{20}$:	$\frac{dy}{dx} = \frac{1}{\sqrt{1 - 100x^2}} \cdot 10 = \frac{10}{\sqrt{1 - 100x^2}}$ $\frac{dy}{dx} = \frac{10}{\sqrt{1 - \frac{100}{400}}} = \frac{10}{\sqrt{1 - \frac{1}{4}}} = \frac{10}{\sqrt{\frac{3}{4}}}$ $\frac{dy}{dx} = \frac{10}{\sqrt{1 - \frac{1}{400}}} = \frac{20}{\sqrt{1 - \frac{1}{4}}}$	
	$\frac{dy}{dx} = \frac{10}{\left(\frac{\sqrt{3}}{2}\right)} = \frac{20}{\sqrt{3}}$	
7(b)(i)	01	
$y = \sin y$ $\sin y$ $\cos y$	$in^{-1}(10x)$ $= 10x$ $\frac{dy}{dx} = 10$ $\frac{10}{\cos y} = \frac{10}{\sqrt{1 - 100x^2}} \qquad \text{(from diagram)}$	$\frac{1}{\sqrt{1-100 x^2}}$ $\sin y = 10x = \frac{10x}{1}$
		$\cos y = \frac{\sqrt{1 - 100x^2}}{1} = \sqrt{1 - 100x^2}$

- Differentiation. **B**1
- B2 Indices.
- Definition of $\sin y$ and/or $\cos y$ (once only). Sides of triangle (once only). B3
- B4
- Not evaluating derivative at given x. B5

Attempts

Error in differentiation formula. A1

Worthless (0)

Integration. W1

Part (b)(ii)	10 (5, 5)marks	Att (2, 2)
7(b)(ii)	The parametric equations of a curve are	
	$x = ln(1+t^2)$ and $y = ln 2t$, where t	$\in R, t > 0.$
	Find the value of $\frac{dy}{dx}$ when $t = \sqrt{5}$.	

$\frac{dx}{dt}, \frac{dy}{dt}$		5 marks	Att 2
Value		5 marks	Att 2
7(b)(ii)			
	y = ln 2t	$x = ln(1+t^2)$	
	$\frac{dy}{dt} = \frac{1}{2t} \cdot 2 = \frac{1}{t}$	$\frac{dx}{dt} = \frac{1}{1+t^2} \cdot 2t = \frac{2t}{1+t^2}$	
	$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{1}{\left(\frac{dx}{dt}\right)}$	$\frac{\left(\frac{1}{t}\right)}{\frac{2t}{1+t^2}} = \frac{1+t^2}{2t^2}$	
When	$t=\sqrt{5}$,	$\frac{dy}{dx} = \frac{1+5}{2(5)} = \frac{3}{5}$	

- Differentiation. B1
- Indices. B2
- Definition of $\frac{dy}{dx}$. B3
- B4
- Logs. Value or no value. B5

Attempts

Error in differentiation formula. A1

Worthless

- Integration. W1
- W2 No differentiation.

Part (c)

7(c) Let $f(x) = \frac{e^x + e^{-x}}{2}$
(i) Show that $f''(x) = f(x)$, where $f''(x)$ is the second derivative of $f(x)$.
(ii) Show that $\frac{f'(2x)}{f'(x)} = 2f(x)$ when $x \neq 0$ and where $f'(x)$ is the first derivative of $f(x)$

Part (c)(i) f'(2x) Finish	10 marks 5 marks 5 marks	Att 3 Att 2 Att 2	
7(c)(i)	$f(x) = \frac{1}{2} \left[e^x + e^{-x} \right]$		
	$f'(x) = \frac{1}{2} \left[e^x - e^{-x} \right]$		
	$f''(x) = \frac{1}{2} \left[e^x + e^{-x} \right] \qquad \Rightarrow f(x) = f''(x)$		
7(c)(ii)	$\frac{f'(2x)}{f'(x)} = 2[f(x)]$		
	<i>J</i> (**)		
	$f'(x) = \frac{1}{2} \left[e^x - e^{-x} \right]$		
	$f'(2x) = \frac{1}{2} \left[e^{2x} - e^{-2x} \right] = \frac{1}{2} \left[\left(e^{x} \right)^{2} - \left(e^{-x} \right)^{2} \right]$		
	$f'(2x) = \frac{1}{2} \left[\left(e^x \right)^2 - \left(e^{-x} \right)^2 \right] = \frac{1}{2} \left[\left(e^x - e^{-x} \right) \left(e^x + e^{-x} \right) \right]$		
	$\frac{f'(2x)}{f'(x)} = \frac{\frac{1}{2} \left[\left(e^x \right)^2 - \left(e^{-x} \right)^2 \right]}{\frac{1}{2} \left[e^x - e^{-x} \right]} = \frac{\frac{1}{2} \left[\left(e^x - e^{-x} \right) \left(e^x + e^{-x} \right) \right]}{\frac{1}{2} \left[e^x - e^{-x} \right]}$		
	$= e^{x} + e^{-x}$		
	$= 2\left[\frac{1}{2}\left(e^{x} + e^{-x}\right)\right]$ $= 2\left[f(x)\right]$		
	-2[f(x)]		

Blunders (-3)

- B1 Differentiation.
- B2 Indices.
- B3 f'(2x).

Attempts

A1 Error in differentiation formula.

Worthless (0)

- W1 No differentiation.
- W2 Integration.

	QUESTION 8	
Part (a)	10 marks	Att 3
Part (b)	20 (10, 10)	Att (3, 3)
Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)

Part (a)	10 marks	Att 3
8(a)		
Find $\int (x^3 + \sqrt{x} + 2) dx$.		

Part (a)	10 marks	Att 3
8(a)		
	$\int \left(x^3 + x^{\frac{1}{2}} + 2\right) dx = \frac{x^4}{4} + \frac{x^{\frac{1}{2}}}{\frac{3}{2}} + 2x + c$	
	$=\frac{x^4}{4}+\frac{2}{3}x^{\frac{3}{2}}+2x+c$	

- B1 Integration.
- B2 No c.
- B3 Indices.

Attempts

A1 Only *c* correct.

Worthless

W1 Differentiation instead of integration.

Part (b)	20 (10, 10) marks	Att (3, 3)		
8(b) Evaluate (i) $\int_{2}^{7} \frac{2x-4}{x^2-4x+29} dx$ (ii) $\int_{2}^{7} \frac{1}{x^2-4x+29} dx$.				
Part (i) Part(ii)	10 marks 10 marks	Att 3 Att 3		
8(b)(i)				
$\int_{2}^{7} \frac{(2x-x)}{x^2-4x}$				
Let $w = x^2 - 4x + 29 \implies \frac{dw}{dx} = 2x - 4$ $\implies dw = (2x - 4)dx$				
Change limits: $x = 2, u$	= 25 and $x = 7, u = 50$			
$\int_{2}^{7} \frac{(2x-4) dx}{x^2 - 4x + 29}$	25			
	$=\ln w\Big _{25}^{50}$			
	$= \ln 50 - \ln 25$ $= \ln \left(\frac{50}{25}\right) = \ln 2$			
or				
	$= \ln \left(x^2 - 4x + 29 \right) \Big]_2^7$			
	$= \ln[49 - 28 + 29] - \ln[4 - 8 + 29]$			
	$= \ln 50 - \ln 25$			
	$=\ln\left(\frac{50}{25}\right)=\ln 2$			
8(b)(ii)				
$\int_{2}^{7} \frac{dx}{x^2 - 4x}$	+29			
$x^2 - 4x + 29 = x^2$				
, T	$(x-2)^2 + (5)^2$			
$\int \frac{dx}{x^2 - 4x + 29} =$				
=	$\int \frac{dw}{w^2 + 5^2} \qquad \qquad \frac{dw}{dx} = 1$			
	dw = dx			

$$= \frac{1}{5} \tan^{-1} \left(\frac{w}{5} \right)$$

$$= \frac{1}{5} \left[\tan^{-1} \left(\frac{x-2}{5} \right) \right]_{2}^{7} \text{ or } \frac{1}{5} \tan^{-1} \left(\frac{w}{5} \right) \Big|_{0}^{5}$$

$$= \frac{1}{5} \left[\tan^{-1} (1) - \tan^{-1} (0) \right]$$

$$= \frac{1}{5} \left[\frac{\pi}{4} - 0 \right]$$

$$= \frac{\pi}{20}$$

- B1 Integration.
- B2 Indices.
- B3 Limits.
- B4 No limits.
- B5 Incorrect order in applying limits.
- B6 Not calculating substituted limits.
- B7 Not changing limits.
- B8 Differentiation.

Slips (-1)

- S1 Numerical.
- S2 Uses $\pi = 180^{\circ}$.

Worthless:

- W1 Differentiation instead of integration (except where other work merits attempt).
- W2 Puts $w = x^2 4x + 29$ in (ii).
- *Note* Incorrect substitution and unable to finish merits attempt at most.
- *Note* (-3) is maximum deduction in evaluation of limits.

Part (c)		20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)		
8(c) Le	$f(x) = x^3 - 3x^2 + 5$.		y = f(x)		
	s the tangent to the curve	y = f(x) at its			
loc	al maximum point				
Fir	Find the area enclosed between <i>L</i> and the curve.				
Max Poin		5 marks	Att 2		
Other Lin 1 st Area	nit	5 marks 5 marks	Att 2 Att 2		
2 nd Area		5 marks	Att 2		
8(c)			/		
f($x\big)=x^3-3x^2+5$		a 6		
	$(x) = 3x^2 - 6x$	- (0,5	5>		
0	(x) = 6x - 6				
Local max	$/\min \operatorname{at} f'(x) = 0$				
	$3x^2 - 6x = 0$		(2,1)		
	3x(x-2) = 0 = 0 or $x = 2$				
<i>x</i> =	$= 0 \text{or} \qquad x = 2$		c		
Test in f''	(x) = 6x - 6		0 2 3		
$x = 0$: $6(0) - 6 = -6 < 0 \Rightarrow$ Local max at $x = 0$					
$x = 0$: $f(x) = y = 0 - 0 + 5 = 5 \Rightarrow$ Local max at (0, 5)					
Equation L: $y = 5$					
$L \cap Curv$)			
	U 11	$-3x^{2}+5$			
	$0 = x^2 (x = 0)$	$\begin{array}{c} (x-3) \\ \text{or} x = 3 \end{array}$			
- 0			I(25)		
$x = 0, y = 5 \Rightarrow a(0,5)$ $x = 3, y = 5 \Rightarrow b(3,5)$					
Required area = Area rectangle $abcd - \int_{0}^{3} ydx$					
Area $abcd = (5)(3) = 15$ or area rectangle $= \int_{0}^{3} y \cdot dx = \int 5 \cdot dx = 5x \Big]_{0}^{3} = 15 - 0 = 15$					
$\int_{0}^{3} y \cdot dx = \int \left(x^{3} - 3x^{2} + 5\right) dx = \left(\frac{x^{4}}{4} - x^{3} + 5x\right)_{0}^{3}$					
$= \left(\frac{81}{4} - 27 + 15\right) - 0$					
		$=\frac{33}{4}$			
Re	quired Area = $15 - \frac{33}{4} =$				

- B1 Indices.
- B2 Integration.
- B3 $f'(x) \neq 0$.
- B4 Factors (once only).
- B5 Value from factor.
- B6 Area formula.
- B7 Limits.
- B8 Not changing limits.
- B9 Not finding required area.

Attempts

- A1 Some relevant area.
- A2 Uses volume formula.
- A3 Uses y^2 in formula.

Slips (-1)

S1 Numerical

Worthless (0)

- W1 Differentiation instead of integration except where other work merits attempts.
- W2 Wrong area formula and no work.
- W3 Graphical methods only.

Notes

- N1 (-3) is maximum deduction when evaluating limits.
- N2 Where candidate obtains area by translation, allow 5 marks for translation and 5 marks for required area.
An Roinn Oideachais agus Eolaíochta

Leaving Certificate Examination 2002

Marking Scheme

MATHEMATICS

Higher Level

Paper 2

General Instructions

Penalties are applied as follows:

	numerical slips, misreadings blunders, major omissions	(-1) each (-3) each.	
Note 1:	The lists of slips, blunders and attempts give exhaustive.	en in the marking scheme are not	
Note 2:	A serious blunder, omission or misreading r	nerits the attempt mark at most.	
Note 3:	1	ttempt mark for a section is the final mark for that section. Where stions result in a mark that is less than the attempt mark, the attempt mark arded.	
Note 4:	Particular cases and verifications are, in gen only.	eral, awarded the attempt mark	
Note 5:	All of the candidate's work, including any the highest scoring solutions are allowed.	nat is cancelled, is marked and the	

	QUESTION 1	
Part (a)	10 marks	Att 3
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (a)	10 marks	Att 3
1(a)		
	rametric equations define a circle:	
3	$x = 4 + 3\cos\theta, y = -2 + 3\sin\theta, \text{where }\theta$	$\theta \in \mathbf{R}$.
What is the Carte	sian equation of the circle?	

$= 4 + 3\cos\theta$, $v = -2 + 3\sin\theta$, where $\theta \in \mathbf{R}$	
(-)	
$(x-4)^2 + (y+2)^2 = 9.$	
C	$= 4 + 3\cos\theta, y = -2 + 3\sin\theta, \text{where } \theta \in \mathbf{R} .$ $(x - 4)^2 = 9\cos^2\theta, (y + 2)^2 = 9\sin^2\theta.$ $(x - 4)^2 + (y + 2)^2 = 9(\cos^2\theta + \sin^2\theta)$ $(x - 4)^2 + (y + 2)^2 = 9.$

- B1 Incorrect squaring.
- B2 Incorrect centre or incorrect radius.

Slips (-1)

S1 Arithmetic error.

- A1 $x-4 = 3\cos\theta$ or $y+2 = 3\sin\theta$.
- A2 Correct centre or correct radius.
- A3 $(x-4)^2 + (y+2)^2 = 9\cos^2\theta + 9\sin^2\theta$ and stops.

Att (2, 2, 2, 2)

Part (b)(i) 5 marks Att 2 1(b)(i) The points a(-2, 4), b(0, -10) and c(6, -2) are the vertices of a triangle.

Verify that the triangle is right-angled at *c*.

Verify $ \angle acb = 90^{\circ}$	5 marks	Att 2
1(b)(i)		
slope <i>ac</i> =	$\frac{-2-4}{6+2} = \frac{-6}{8} = \frac{-3}{4} = m_1$	
slope bc =	$\frac{-2+10}{6-0} = \frac{8}{6} = \frac{4}{3} = m_2$	
But $m_1.m_2$	$=-1 \Rightarrow ac \perp bc.$	
or		
$\left ab\right ^2 = (0)$	$(0+2)^2 + (-10-4)^2 = 200.$	
$\left bc\right ^2 = (6$	$(5-0)^2 + (-2+10)^2 = 100.$	
$\left ac\right ^{2} = (0)$	$(5+2)^2 + (-2-4)^2 = 100.$	
As $ ab ^2 =$	$ bc ^2 + ac ^2 \Rightarrow ac \perp bc.$	

Blunders (-3)

- B1 Error in slope formula.
- B2 Error in distance formula.
- B3 Incorrect application of Pythagoras.

Slips (-1)

S1 Arithmetic error.

- A1 One slope found.
- A2 Length of one line found.
- A3 $m_1.m_2$ not stated.

Part (b) (ii)	15 (5, 5, 5) marks	Att (2, 2, 2)
1(b)(ii) Hence, or otherwise, f a, b and c .	find the equation of the circle that	passes through the points
Centre or three equations in <i>g</i> , <i>j</i> Radius or <i>g</i> , <i>f</i> , <i>c</i> solved Equation of circle	f, c 5 marks 5 marks 5 marks	Att 2 Att 2 Att 2
$\therefore \text{ centre of circle is}$ Centre is $d\left(\frac{-2-6}{2}\right)$ Radius = $ ad = \sqrt{2}$	$\frac{0}{2}, \frac{4-10}{2} = d(-1, -3).$ $\sqrt{(-2+1)^2 + (4+3)^2} = \sqrt{50}.$	
or $C: x^{2} + y^{2} + 2gx$ $a(-2, 4) \in C \implies$ $b(0, -10) \in C \implies$	+ $(y+3)^2 = 50.$ (y+2fy+c=0.) (-4g+8f+c=-20.) -20f+c=-100. 12g-4f+c=-40.	
$\frac{12g-4f}{20f}$	f + 3c = -60 f + c = -40 $f + 4c = -100 \implies 5f + c = -25.$	
	= -100	

- B1 Error in midpoint formula.
- B2 Incorrect centre, e.g. not taking [*ab*] as diameter.
- B3 Incorrect distance formula.
- B4 Diameter for radius.
- B5 Incorrect form of circle equation.

Slips (-1)

S1 Arithmetic error.

- A1 [*ab*] diameter.
- A2 One equation in g, f and c.
- A3 Equation of circle with some substitution.

Part (c)

Att (2, 2, 2, 2)

Show distance from centre = 3	5 marks	Att 2
1(c)(i)		
	$x^2 + y^2 - 4x + 6y -$	12 = 0 Centre is (2,-3)
4 4	$r = \sqrt{g^2 + f^2 - c} =$	$\sqrt{4+9+12} = 5.$
d d	$5^2 =$	$d^{2} + 4^{2}$
i v	$\therefore d$	= 3.

Blunders (-3)

- B1 Incorrect sign in centre point or incorrect g, f.
- B2 Error in radius length formula.
- B3 Incorrect application of Pythagoras.

Slips (-1)

S1 Arithmetic error.

- A1 Correct centre.
- A2 Correct radius.
- A3 $\frac{1}{2}$ length of chord = 4.

Part (c)(ii)	15 (5, 5, 5) marks	Att (2, 2, 2)
1(c)(ii)	Given that L and M intersect at the point $(-4, 0)$, find the equations of L and M.	

Equation of line with full substitution	5 marks	Att 2
Quadratic $3m^2 + 4m = 0$	5 marks	Att 2
To finish	5 marks	Att 2
1(c)(ii) Required equations: $y = 0$ mx = y + 4m		

But perpendicular distance from centre (2, -3) to mx - y + 4m = 0 equals 3.

 $\therefore \quad \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right| = 3 \quad \Rightarrow \quad \left| \frac{2m + 3 + 4m}{\sqrt{m^2 + 1}} \right| = 3.$ $6m+3 = 3\sqrt{m^2+1} \implies (2m+1)^2 = m^2+1.$ $3m^2 + 4m = 0 \implies m(3m+4) = 0.$ $\therefore m = 0$ or $m = -\frac{4}{3}$. mx - y + 4m = 0, when $m = 0 \implies L: y = 0$. mx - y + 4m = 0, when $m = -\frac{4}{3} \implies M: 4x + 3y + 16 = 0$.

Blunders (-3)

- Error in line formula. B1
- B2 Error in \perp distance formula.
- B3 Incorrect squaring.
- B4 Incorrect factors.
- B5 *m* found but lines not given.

Slips (-1)

Arithmetic error. **S**1

- Equation of line with some substitution. A1
- A2 Substitution into \perp distance formula.
- A3 One value of *m*.

	QUESTION 2	
Part (a)	10 marks	Att 3
Part (b)	20 (5, 10, 5) marks	Att (2, 3, 2)
Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (a)	10 marks	Att 3
2(a)	$\vec{s} = 4 \vec{i} - 3 \vec{j}$ and $\vec{t} = 2 \vec{i} - 5 \vec{j}$.	
	Find $ \vec{st} $.	

$\begin{vmatrix} \vec{st} \end{vmatrix}$	10 marks	Att 3
2(a)		
	$\vec{s} = 4 \vec{i} - 3 \vec{j}$ and $\vec{t} = 2 \vec{i} - 5 \vec{j}$.	
	$\vec{st} = \vec{t} - \vec{s} = 2\vec{i} - 5\vec{j} - 4\vec{i} + 3\vec{j} = -2\vec{i} - 2\vec{j}.$	
	$\therefore \vec{st} = \sqrt{4+4} = \sqrt{8}.$	

B1 Incorrect formula for norm of vector.

B2 Error in distance formula.

Slips (-1)

S1 Arithmetic error.

Attempts (3 marks)

A1 $\vec{st} = \vec{t} - \vec{s}$ or $\vec{ts} = \vec{s} - \vec{t}$.

Worthless (0)

W1 $\overrightarrow{st} = \overrightarrow{s} \cdot \overrightarrow{t}$.

Part (b)	20 (5, 10, 5) marks	Att (2, 3, 2)
Part (b)(i)	5 marks	Att 2
$p \in [ab]$ such that $ a $ q is the midpoint of [<i>[oc]</i> .	r a b p

Find ratio or : rp	5 marks	Att 2
2(b)(i)	$\frac{ or }{ rp } = \frac{ oq }{ ap } = \frac{\frac{1}{2} oc }{\frac{3}{4} ab } = \frac{2 oc }{3 oc } = \frac{2}{3}.$	

B1 Error in ratio of sides.

B2 |oq| or |ap| incorrect in relation to |oc| or |ab| respectively.

Slips (-1)

S1 Arithmetic error.

- A1 Correct equiangular triangles.
- A2 |oq| correct in relation to |oc|.
- A3 |ap| correct in relation to |ab|.

Part (b)(ii)	15 (10, 5) marks	Att (3, 2)
2(b)(ii)	Express \vec{p} , and hence \vec{r} , in terms of \vec{a} and \vec{b} .	
Express \vec{p}	10 marks	Att 3
Express \vec{r}	5 marks	Att 2
2(b)(ii)	_	
or	$\vec{p} = \frac{\vec{a} + 3\vec{b}}{4} = \frac{1}{4}\vec{a} + \frac{3}{4}\vec{b}$ $\vec{p} = \vec{a} + \frac{3}{4}\vec{a}\vec{b} = \vec{a} + \frac{3}{4}(\vec{b} - \vec{a})$ $\vec{p} = \frac{1}{4}\vec{a} + \frac{3}{4}\vec{b}$	
or	$\vec{r} = \frac{3\vec{o} + 2\vec{p}}{5} = \frac{2}{5}\vec{p} = \frac{2}{5}(\frac{1}{4}a + \frac{3}{4}\vec{b})$ $= \frac{1}{10}\vec{a} + \frac{3}{10}\vec{b}$ $ or : rp = 2:3 \implies \vec{r} = \frac{2}{5}\vec{p} = \frac{2}{5}(\frac{1}{4}\vec{a} + \frac{3}{4}\vec{b})$ $\vec{r} = \frac{1}{10}\vec{a} + \frac{3}{10}\vec{b}$	

Blunders (–3) B1 Error in ratio formula. $\vec{ab} = \vec{a} - \vec{b}$. B2 $r\vec{p}=\vec{r}-\vec{p}.$ B3 Incorrect value of |or| : |rp|. B4 Slips (-1)S1 Arithmetic error.

A1
$$\vec{p} = \vec{a} + \frac{3}{4}\vec{ab}.$$

A2 $\vec{r} = \frac{2}{5}\vec{p}.$
A3 $3\vec{r} = 2\vec{rp}.$

Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)(i)	10 marks (5, 5)	Att (2, 2)
2(c)(i)	$\vec{k} = \vec{i} + 3 \vec{j}, \vec{n} = 4 \vec{i} - 2 \vec{j}, \vec{u} = 2 \vec{i} + \vec{j} \text{ and } \vec{v} = x \vec{i} + \vec{j}$	$y \vec{j}$ where $x, y \in \mathbf{R}$.
	Express the value of $\vec{kn} \cdot \vec{kv}$ in the form $ax + by + c$ with	here $a, b, c \in \mathbf{R}$.

\vec{kv}	5 marks	Att 2
To finish	5 marks	Att 2
2(c)(i)		
	$\vec{kn} = \vec{n} - \vec{k} = 4\vec{i} - 2\vec{j} - \vec{i} - 3\vec{j} \implies$	$\vec{kn} = 3\vec{i} - 5\vec{j}.$
	$\vec{kv} = \vec{v} - \vec{k} = x\vec{i} + y\vec{j} - \vec{i} - 3\vec{j} \implies$	$\vec{kv} = (x-1)\vec{i} + (y-3)\vec{j}.$
	$\vec{kn}.\vec{kv} = (3\vec{i}-5\vec{j}).((x-1)\vec{i}+(y-3)\vec{j})$)
	$\vec{kn} \cdot \vec{kv} = 3(x-1) - 5(y-3) = 3x - 5$	5y + 12.

B1 $kv = \vec{k} - \vec{v}$. B2 Incorrect vector multiplication.

Slips(-1)

S1 Arithmetic error.

Attempts (2 marks)

A1 $\vec{kv} = \vec{v} - \vec{k}$. A2 \vec{kn} correct.

Part (c)(ii)	10 (5, 5) marks	Att (2, 2)
2(c)(ii)	Prove that if $\vec{kn} \cdot \vec{kv} = \vec{kn} \cdot \vec{ku}$, and $\vec{u} \neq \vec{v}$, then $\vec{kn} \perp \vec{uv}$.	
\rightarrow \rightarrow		

<i>kn. ku</i> To finish	5 marks 5 marks	Att 2 Att 2
2(c)(ii)	$\vec{ku} = \vec{u} - \vec{k} = 2\vec{i} + \vec{j} - \vec{i} - 3\vec{j} \implies \vec{ku} = \vec{i} - \vec{k}$ But $\vec{kn} = 3\vec{i} - 5\vec{j} \implies \vec{kn} \cdot \vec{ku} = (3\vec{i} - 5\vec{j}) \cdot (\vec{i} + \vec{kn})$ From part (i) $\vec{kn} \cdot \vec{kv} = 3x - 5y + 12$. $\therefore 3x - 5y + 12 = 13 \implies 3x - 5y - 1 = 0$ w	$-2\vec{j}$. $-2\vec{j}$) = 3 + 10 = 13. when $\vec{kn} \cdot \vec{kv} = \vec{kn} \cdot \vec{ku}$.
$\vec{uv} = \vec{v} - \vec{u} = x\vec{i} + y\vec{j} - 2\vec{i} - \vec{j} \implies \vec{uv} = (x-2)\vec{i} + (y-1)\vec{j}.$ $\vec{kn} \cdot \vec{uv} = (3\vec{i} - 5\vec{j}) \cdot ((x-2)\vec{i} + (y-1)\vec{j})$ = 3(x-2) - 5(y-1) = 3x - 5y - 1 = 0 $\therefore \vec{kn} \perp \vec{uv}.$		$-2)\vec{i} + (y-1)\vec{j}.$

- B1 Error in finding scalar $\vec{kn} \cdot \vec{ku}$.
- B2 No conclusion given why $\vec{kn} \perp \vec{uv}$.

Slips (-1) S1 Arithmetic error.

Attempts (2 marks)

A1 \vec{ku} correct. A2 \vec{uv} correct.

	QUESTION 3	
Part (a)	10 (5, 5) marks	Att (2, 2)
Part (b)	40 (5, 10, 10, 5, 5, 5) marks	Att (2, 3, 3, 2, 2,2)
Part (a)	10 (5, 5) marks	Att (2, 2)
3(a)	a(-1, 4) and $b(5, -4)$ are two points.	
	Find the equation of the perpendicular bisector of $[ab]$.	

Midpoint or slope <i>ab</i>	5 marks	Att 2
To finish	5 marks	Att 2
3(a)		
a(-1, 4), b(5)	$(-4) \Rightarrow \text{midpoint} [ab] = (2,$	0)
	4 4 9 4	2
slope $ab =$	$\frac{-4-4}{5+1} = \frac{-8}{6} = -\frac{4}{3} \implies$	\perp slope = $\frac{3}{1}$
		2
Equation o	f perpendicular bisector : $y - $	$0 = \frac{3}{4}(x-2)$
1		
	3x - 4y -	6 = 0.

- B1 Error in midpoint formula.
- B2 Error in slope formula.
- B3 Incorrect \perp slope.
- B4 Error in equation of line formula.

Slips (-1)

S1 Arithmetic error.

- A1 Midpoint with some substitution.
- A2 Slope formula with some substitution.
- A3 Equation of line *ab*.
- A4 Line formula with some substitution.

Part (b)	40 (5, 10, 10, 5, 5, 5) marks	Att (2, 3, 3, 2, 2,2)	
Part (b)(i)	5 marks	Att 2	
3(b)(i)			
f is the transformation $(x, y) \rightarrow (x', y')$ where $x' = 3x + y$ and $y' = x - 2y$.			
	S is the square whose vertices are $(0, 0)$, $(1, 0)$, $(1, 1)$ and	l (0, 1).	
	(i) Find the image under f of each of the four vertice	ces of S.	

Image points	5 marks	Att 2
3(b)(i)		
f(0,0) = (0,0)	or	$ \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} $
f(1,0) = (3,1)		$ \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} $
f(1, 1) = (4, -1)		$ \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix} $
f(0,1) = (1,-2)		$ \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} $

B1

Image point incorrect (unless due to slip). Incorrect matrix multiplication (unless due to slip). B2

Slips (-1)

Arithmetic error. **S**1

- One correct image point. A1
- Correct matrix for f. A2

Part (b)(ii)	10 marks	Att 3
3(b)(ii)	Express x and y in terms of x' and y' .	
Express x an	d y 10 marks	Att 3
3(b)(ii)		
f is th	the transformation $(x, y) \rightarrow (x', y')$ where $x' = 3$	x + y and $y' = x - 2y$.
	2x' = 6x + 2y	
	$\underline{y' = x - 2y}$	
	$2x' + y' = 7x \implies x = \frac{1}{7}(2x' + y')$	
	But $y = x' - 3x \implies y = x' - \frac{3}{7}(2x' + y')$	
	$\therefore y = \frac{1}{7}(x'-3y').$	
or		
	$ \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} \implies \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} $	$\int_{y'}^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$
	$\therefore \begin{pmatrix} x \\ y \end{pmatrix} = \frac{-1}{7} \begin{pmatrix} -2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$	$g_{3}\begin{pmatrix} x'\\ y' \end{pmatrix}$
	$\Rightarrow x = \frac{1}{7}(2x' + y') \text{ and } y = \frac{1}{7}(x' - 3)$	y').
<u>. </u>		

- Blunders (-3)B1Error in matrix f.B2Error in f^{-1} .

Slips (-1)Árithmetic error. S1

- Attempts (3 marks)A1Attempt at expressing x or y in terms of primes.A2Correct matrix for f.

Part (b)(iii)	10 marks	Att 3	
3(b)(iii)			
	By considering the lines $ax + by + c = 0$ and $ax + by + d = 0$, or otherwise,		
	prove that f maps every pair of parallel lines to	a pair of parallel lines.	
	(You may assume that f maps every line to a	ne.)	

Prove	10 marks	Att 3	
3(b)(iii)			
	L: ax + by + c = 0		
	f(L): f(ax+by+c) = 0		
	$f(L): \ \frac{a}{7}(2x'+y') + \frac{b}{7}(x'-3y') + c = 0$		
	f(L): x'(2a+b) + y'(a-3b) + 7c = 0		
Simila	rly, M : $ax + by + d = 0$		
	f(M): f(ax+by+d) = 0		
	f(M): x'(2a+b) + y'(a-3b) + 7d = 0		
	Slope $f(L) = \frac{-(2a+b)}{a-3b} = \text{Slope} f(M)$		
	$\therefore L \text{ parallel to } M \implies f(L) \text{ parallel to } f(M).$		

- B1 Incorrect matrix or matrix multiplication.
- B2 Image line not simplified to px' + qy' + r = 0.
- B3 Failure to finish correctly.

Slips (-1)

S1 Arithmetic error.

- A1 Correct substitution of primes.
- A2 Correct matrix for *f*.
- A3 Finds image of one line and stops.

Part (b)(iv)	10 marks (5, 5)	Att (2, 2)
3(b)(iv)	Show both <i>S</i> and $f(S)$ on a diagram.	
Show <i>S</i> Show <i>f</i> (<i>S</i>)	5 marks 5 marks	Att 2 Att 2
3(b)(iv)	(0, 1) (1, 1) (3, 1) $(0, 0) (1, 0)$ $f(S) (4, -1)$ $(1, -2)$	
	ect plotting of point for S . ect plotting of point for $f(S)$.	
<i>Slips</i> (–1) S1 Arithm	netic error.	
	arks) a showing two points for S. a showing two points for $f(S)$.	
Part (b)(v)	5 marks	Att 2

3(b)(v)	Find the area of $f(S)$.		
Area of f (S)	5 marks Att 2		
3(b)(v)	Area $f(S) = 2 \times \text{area of triangle with vertices } (0, 0), (4, -1), (3, 1).$		
	$= 2 \times \frac{1}{2} 4(1) - 3(-1) = 7$ square units.		
	or Matrix $f = \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} \Rightarrow \det f = 7.$		

But area $f(S) = |\det f| \times \text{area } S = 7 \times 1 = 7$ square units.

Blunders (-3)

B1 Error in area of triangle formula.

B2 Takes f(S) as rectangle.

B3 Error in determinant of f.

Slips (-1)

S1 Arithmetic error.

- A1 Area of a triangle found.
- A2 Correct determinant.

	QUESTION 4	
Part (a)	10 marks	Att 3
Part (b) Part (a)	20 (5, 5, 5, 5) marks 20 (10, 5, 5) marks	Att $(2, 2, 2, 2)$
Part (c)	20 (10, 5, 5)marks	Att (3, 2, 2)
Part (a)	10 marks	Att 3
4(a) Find the value	ue of θ for which $\cos \theta = -\frac{\sqrt{3}}{2}, 0^{\circ} \le$	$\theta \leq 180^{\circ}$.
Find the value of θ	10 marks	Att 3
4(a)	$\theta = -\frac{\sqrt{3}}{2} \Rightarrow \theta = 150^{\circ}.$	
Blunders (-3) B1 Solution = 30° , 150	0.	
Slips (-1) S1 Arithmetic error.		
Attempts (3 marks)A1Solution = 30^0 .A2Solution = 30^0 , 120	0.	
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (b)(i)	5 marks	Att 2
4(b)(i)	a $\sin^2 A = \frac{1}{2}(1 - \cos 2A)$ to express sin	$x^2 \frac{1}{2}x$ in terms of $\cos x$.
Express	5 marks	Att 2
4(b)(i) sin ²	$\frac{1}{2}x = \frac{1}{2}(1-\cos x).$	

Blunders (-3) B1 $\sin^2 \frac{1}{2}x = \frac{1}{2}(1 - \cos 2x)$. Slips (-1) S1 Arithmetic error.

Attempts (2 marks) A1 $A = \frac{1}{2}x$.

Part (b)(ii)		15 (5, 5, 5) marks	Att (2, 2, 2)
4(b)(ii)	Hence, or otherw	vise, find all the solutions of the	ne equation
	$\sin^2\frac{1}{2}x - \cos^2\frac{1}{2}x - $	$s^2 x = 0$ in the domain $0^\circ \le$	$x \leq 360^\circ$.
Quadratic in c	0S <i>X</i>	5 marks	Att 2
Solve for cosx		5 marks	Att 2

Solve for x	5 marks	Att 2
4(b)(ii)		
	$\sin^2\frac{1}{2}x - \cos^2 x = 0$	
	$\frac{1}{2}(1-\cos x) - \cos^2 x = 0$	
	$1 - \cos x - 2\cos^2 x = 0 \implies 2\cos^2 x$	$x + \cos x - 1 = 0$
	$(2\cos x - 1)(\cos x + 1) = 0$	
	$\therefore \cos x = \frac{1}{2} \text{or} \cos x = -1$	
	$x = 60^{\circ}, 300^{\circ} \text{ or } x = 180^{\circ}.$	
	Solution = $\{60^\circ, 180^\circ, 300^\circ\}$.	

- B1 Error in factors.
- B2 Error in quadratic formula.
- B3 Missing solution or incorrect 'solution'.

Slips (-1) S1 Arithmetic error.

- A1 $\sin^2 \frac{1}{2}x$ replaced by $\frac{1}{2}(1-\cos x)$.
- A2 Correct factors.
- A3 One correct solution for *x*.

Part (c)	20 (10, 5, 5)marks	Att (3, 2, 2)
Part (c)(i)	10 marks	Att 3
4(c)(i)		
A chain passes around two circular wheels as shown. One wheel has radius 75 cm and the other has radius 15 cm. The centres, e and f , of the wheels are 120 cm apart.	75 cm/	a b 15cm
The chain consists of the common tangent $[ab]$, the minor arc bc , the common tangent $[cd]$ and the major arc da .		$\frac{120 \text{ cm}}{c}$
Find the measure of $\angle aef$.		1

Find the measure of $\angle aef$.	10 marks	Att 3
4(c(i)		
eg = 75 -	-15 = 60 cm.	
cos∠aef	$= \frac{ eg }{ ef } = \frac{60}{120} = \frac{1}{2}$	
$\therefore \angle aef $	$= 60^{\circ}$.	

Blunders (-3) B1 $\cos^{-1}(\frac{1}{2})$ incorrect.

Incorrect ratio of sides for cos. B2

Slips (-1) Arithmetic error. S1

Attempts (3 marks)

|eg| = 60 cm. A1 $\cos \angle aef$ used. A2

 $\begin{array}{l} \text{Misreading (-1)} \\ \text{M1} \quad |eg| = 75 \text{ cm.} \end{array}$

Part (c)(ii)	5 marks	Att 2
4(c)(ii)	Find $ ab $ in surd form	
Find <i>ab</i>	5marks	Att 2
4(c)(ii)		
	ab = gf	
	$\left gf\right ^2 = \left ef\right ^2 - \left eg\right ^2$	
	$\left gf\right ^2 = 120^2 - 60^2 = 10800.$	
	$ gf = \sqrt{10800} = 60\sqrt{3}$	
	$\therefore ab = 60\sqrt{3}$	
	or	
	$ eg = 120\sin 60^\circ = 60\sqrt{3}.$	

- $\sin 60^{\circ}$ not expressed as $\frac{\sqrt{3}}{2}$. B1
- Solution in decimal form. B2

Slips (-1) S1 Ar

Arithmetic error.

Attempts (2 marks)

A1 $sin \angle aef$ used.

4(c)(iii)

Find the length of the chain, giving your answer in the form $k\pi + l\sqrt{3}$ where $k, l \in \mathbb{Z}$.

Find the leng	gth of the chain	5 marks	Att 2
4(c)(iii)	Length of chain	= $ \text{major arc } ad + \text{min}$	or arc $bc + ab + cd $.
	major arc <i>ad</i> =	= $r\theta$, where $\theta = 240^{\circ}$ =	$=\frac{4\pi}{3}$
	major arc <i>ad</i> =	$= 75\left(\frac{4\pi}{3}\right) = 100\pi$	
	$ \min arc bc =$	= $r\theta$, where $\theta = 120^{\circ}$ =	$=\frac{2\pi}{3}$
	$ \min arc bc =$	$= 15\left(\frac{2\pi}{3}\right) = 10\pi$	
	Length of the cl	$nain = 100\pi + 10\pi + 60\sqrt{2}$	$\sqrt{3} + 60\sqrt{3}$
		$= 110\pi + 120\sqrt{3}$	

Blunders (-3)

- B1 Incorrect formula for length of arc.
- B2 Incorrect value for θ .
- B3 Error in converting from degrees to radians.
- B3 Incorrect arc chosen.
- B4 Incorrect radius used.
- B5 Any length not added for final solution.

Slips (-1)

S1 Arithmetic error.

Attempts (2 marks)

- A1 Correct θ given.
- A2 Finds 100π or 10π and stops.

Worthless (0)

W1 'Length of arc' given in terms of degrees.

	QUESTION 5	
Part (a)	10 marks	Att 3
Part (b)	20 (10, 5, 5) marks	Att (3, 2, 2)
Part (c)	20 (10, 5, 5) marks	Att (3, 2, 2)
Part (a)	10 marks	Att 3
5(a)		
The area of trian	gle <i>abc</i> is 12 cm ² .	

30°

8 cm

b

 $|ab| = 8 \text{ cm and } |\angle abc| = 30^{\circ}.$ Find |bc|.

Find bc	10 marks	Att 3	
5(a)	Area triangle $abc = 12 \text{ cm}^2$		
	$\frac{1}{2}(8) bc \sin 30^\circ = 12 \text{ cm}^2$		
	$2 bc = 12 \text{ cm} \implies bc = 6 \text{ cm}.$		

Blunders (-3)

Error in area of triangle formula. Sin 30° incorrect. **B**1

B2

Slips (-1)

Arithmetic error. S1

Attempts (3 marks)

Area of triangle formula with some substitution. A1

Worthless (0) $\angle cab = 90^{\circ}$. W1

Part (b)	20 (10, 5, 5) marks	Att (3, 2, 2)
Part (b)(i)	15 (10, 5) marks	Att (3, 2)
5(b)(i)		
Pı	rove that $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$.	

Tan(A+B) or 1	R.H.S.		
in terms of sin	nA,cosB etc	10 marks	Att 3
To finish		5 marks	Att 2
5(b)(i)			
$\tan(A+B) =$	$\frac{\sin(A+B)}{\cos(A+B)} =$	$\frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$	
=	$\frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{1 - \frac{\sin A}{\cos A} \cdot \frac{\sin B}{\cos B}}$ $\frac{\tan A + \tan B}{1 - \tan A \tan B}$	(from dividing above	and below by $\cos A \cos B$)

B1 Incorrect expansion for sin(A+B) or cos(A+B).

Slips (-1) S1 Arithmetic error.

Attempts (3, 2 marks)

A1 Correct expansion for sin(A+B) or cos(A+B).

A2
$$\operatorname{Tan} = \frac{\sin}{\cos}$$
.

A3 Cannot finish due to error.

5(b)(ii) Hence, or otherwise, prove that $\tan 22\frac{1}{2}^{\circ} = \sqrt{2} - 1$.

Prove tan $22\frac{1}{2}\circ = \sqrt{2} - 1$ 5 marks Att 2 5(b)(ii) Let $A = B = 22\frac{1}{2}\circ$ or $\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$, where $A = 22\frac{1}{2}\circ$ $\tan 45^\circ = \frac{2\tan A}{1 - \tan^2 A} \Rightarrow 1 - \tan^2 A = 2\tan A$ $\tan^2 A + 2\tan A - 1 = 0$ $\tan A = \frac{-2 \pm \sqrt{4 + 4}}{2} = \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2}$ But $A = 22\frac{1}{2}\circ$ so $\tan A > 0 \Rightarrow = -1 + \sqrt{2}$ is the required value $\therefore \tan 22\frac{1}{2}\circ = \sqrt{2} - 1$.

Blunders (-3)

- B1 Error in formula used.
- B2 Error in quadratic formula.
- B3 Chooses incorrect solution or both solutions.

Slips (-1)

S1 Arithmetic error.

Attempts (2 marks)

- A1 $A = B = 22\frac{1}{2}^{\circ}$
- A2 Use of tan(A+B) expansion.
- A3 Use of tan2*A*.
- A4 Fails to solve quadratic.

Worthless (0)

W1 Use of calculator for $\tan 22^{\frac{1}{2}\circ}$.

Part (c)

Att (3, 2, 2)

Find (common) distance from p 10 marks	Att 3
5(c)(i) $ pa = pb = pc .$	
triangle apq is right angled at p .	
$\therefore ap ^2 = aq ^2 - qp ^2$	
$\left ap\right ^2 = 52^2 - 48^2 = 400$	
ap = 20 metres.	

Blunders (-3)

- B1 Incorrect squaring.
- B2 Incorrect application of Pythagoras.
- B3 Error in square root.

Slips (-1)

S1 Arithmetic error

Attempts (3 marks)

A1 Application of Pythagoras.

Part	(c)	(ii)	

 10 (5, 5) marks
 Att (2, 2)

 Given that |ac| = 38 m and |ab| = 34 m, find |bc| correct to one decimal place.

 5(c)(ii)

Angle from <i>bc</i>	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Att 2 Att 2
5(c)(ii)	$a \qquad 34 \qquad b \\ 38 \qquad 20 \qquad c \qquad b \\ c \qquad c$	1300 2
or	$\cos \angle apc = \frac{20^2 + 20^2 - 38^2}{2(20)(20)} = \frac{-644}{800}$ $\therefore \angle apc = 143.61^{\circ}$ $\sin \angle \frac{apc}{2} = \frac{19}{20} \implies \angle apc = 143.61^{\circ}.$	
or	$\cos \angle apb = \frac{20^2 + 20^2 - 34^2}{2(20)(20)} = \frac{-356}{800}$ $\therefore \angle apb = 116.42^{\circ}.$ $\sin \angle \frac{apb}{2} = \frac{17}{20} \implies \angle apb = 116.42^{\circ}.$	
	$ \angle cpb = 360^{\circ} - (143.61^{\circ} + 116.42^{\circ}) = 99.97^{\circ}.$ $ bc ^2 = 20^2 + 20^2 - 2(20)(20) \cos \angle 99.97^{\circ}$ $ bc ^2 = 800 + 138.506 = 938.506$ $\therefore bc = 30.6$ metres.	
or	$\sin \angle \frac{cpb}{2} = \frac{\frac{1}{2} bc }{20} \implies bc = 40 \sin \angle \frac{99.97^{\circ}}{2}$ $\therefore bc = 30.6 \text{ metres.}$	

$$|\angle pab| = \cos^{-1} \frac{17}{20} = 31.788^{\circ}$$
$$|\angle pac| = \cos^{-1} \frac{19}{20} = 18.194^{\circ}$$
Applying cosine rule to triangle *abc*:
$$|bc|^{2} = 34^{2} + 38^{2} - 2(34)(38)\cos 49.982^{\circ}$$
$$|bc|^{2} = 1156 + 1444 - 1661.58 = 938.415$$
$$|bc| = 30.63356$$
$$\Rightarrow |bc| = 30.6 \text{ metres}$$

or

Blunders (-3)

- B1 Error in cosine rule formula (apply once).
- B2 Error in substitution into cosine formula.
- B3 Incorrect evaluation of angle.
- B4 Use of sin but with incorrect ratio of lengths.

Slips (-1)

S1 Arithmetic error.

Attempts (2 marks)

- A1 Cosine rule with some substitution.
- A2 \perp from *p* to side and use of sin.

Worthless (0)

W1 Assumes $\angle cpb = 120^{\circ}$.

	QUESTION 6	
Part (a)	20 (10, 5, 5) marks	Att (3, 2, 2)
Part (b)	30 (5, 5, 10, 5, 5) marks	Att (2, 2, 3, 2, 2)
Part (a)	20 (10, 5, 5) marks	Att (3, 2, 2)
Part (a)(i)	10 marks	Att 3

6(a)

Nine friends wish to travel in a car. Only two of them, John and Mary, have licences to drive. Only five people can fit in the car (i.e. the driver and four others).

In how many ways can the group of five people be selected if

(i) both John and Mary are included?

Part (a)(i)	10 marks	Att 3
6(a)(i)	9 people, select group of 5 with John and Mary included \therefore Select 3 from 7. Solution = ${}^{7}C_{3} = 35$.	

Blunders (-3)B1 $^{7}C_{5}$ or $^{9}C_{3}$.

Slips (-1) S1 Arithmetic error.

 $\begin{array}{l} Attempts \ (3 \ marks) \\ A1 \qquad {}^9C_5. \end{array}$

Part (a)(ii)	5 marks	Att 2
6(a)(ii)	either John or Mary is included, but not both?	
Part (a)(ii)	5 marks	Att 2
6(a)(ii)	7	
	John included, Mary excluded $\Rightarrow {}^{7}C_{4}$	
	Mary included, John excluded \Rightarrow ⁷ C ₄	
	$\therefore \text{ Solution } = 2 \times {}^7\text{C}_4 = 70.$	

Blunders (-3) B1 $2 \times {}^{8}C_{4}$.

Slips (-1) S1 Arithmetic error.

Attempts (2 marks) A1 $^{7}C_{4}$.

Part ((a)(iii)	5 marks	Att 2
6(a)	a) Later, another one of the nine friends, Anne, gets a driving licence.		ving licence.
(iii) The next time the journey is made, in how many ways can the group o chosen, given that at least one licensed driver must be included?			

Part (a)(iii)	5 marks	Att 2
6(a)(iii)		
	Total number of selections $= {}^{9}C_{5} = 126$.	
	Number of selections with no driver $= {}^{6}C_{5} = 6$.	
	Number of selections with a driver $= 126 - 6 = 120$.	
or		
	${}^{3}C_{1} \times {}^{6}C_{4} + {}^{3}C_{2} \times {}^{6}C_{3} + {}^{3}C_{3} \times {}^{6}C_{2}$	
	= 45 + 60 + 15 = 120.	

Blunders (-3)

B1 ${}^{9}C_{5}$ and ${}^{6}C_{5}$ not subtracted.

B2 One part of 'second' solution omitted, e.g. ${}^{3}C_{1} \times {}^{6}C_{4}$.

B3 Error in evaluating ${}^{n}C_{r}$.

Slips (-1) S1 Arithmetic error.

 $\begin{array}{ll} Attempts \ (2 \ marks) \\ A1 & {}^9C_5 \ or \ {}^6C_5. \\ A2 & {}^3C_1 \times {}^6C_4. \end{array}$

Part (b)	30 (5, 5, 10, 5, 5) marks	Att (2, 2, 3, 2, 2)
Part (b)(i)	20 (5, 5, 10) marks	Att (2, 2, 3)
6(b)(i)		
	Solve the difference equation $6u_{n+2} - 5u_{n+1} + u_n = 0$,	where $n \ge 0$,
	given that $u_0 = 5$ and $u_1 = 2$.	

Characteristic equat Characteristic roots Final solution	ion 5 marks 5 marks 10 marks	Att 2 Att 2 Att 3
6(b)(i)		
	$6u_{n+2} - 5u_{n+1} + u_n = 0$, where $n \ge 0$	
	$6x^2 - 5x + 1 = 0$	
	$(2x-1)(3x-1) = 0 \implies 2x-1 = 0$ or	3x - 1 = 0
	$\therefore x = \frac{1}{2} \text{ or } x = \frac{1}{3}.$	
	$u_n = k \left(\frac{1}{2}\right)^n + l \left(\frac{1}{3}\right)^n.$	
	$u_0 = 5 \implies k+l = 5 \implies 2k$	+2l = 10
	$u_0 = 0 \implies k + l = 0 \implies 2k$ $u_1 = 2 \implies \frac{1}{2}k + \frac{1}{3}l = 2 \implies 3k$	$\frac{k+2l}{k} = \frac{12}{-2}$
	k = 2 and $l = 3$.	
	$u_n = 2\left(\frac{1}{2}\right)^n + 3\left(\frac{1}{3}\right)^n.$	

- Error in characteristic equation. B1
- Error in factors or in quadratic formula. B2
- B3 Incorrect use of initial conditions.
- B4 Roots in decimal form.

Slips (-1)

S1 Arithmetic error.

Attempts (2, 3 marks)

- Correct form of u_n and stops An equation in k and l. A1
- A2

Worthless (0)

No further marks if roots are complex. W1

Part (b)(ii)	5 marks	Att 2
6(b)(ii)	Find an expression in n for the sum of the terms	$u_0 + u_1 + u_2 + \dots + u_n.$
	(Hint: it is the sum of two geometric series.)	

Blunders (-3)

- B1 Error in formula for sum of geometric series.
- B2 Incorrect value for *n* assigned to formula.
- B3 Incorrect value for *a* or *r* used in formula.

Slips (-1)

S1 Arithmetic error.

Attempts (2 marks)

- A1 Formula for sum of geometric series with some substitution.
- A2 Correct value for *a* or *r*.

Part (b)(iii)	5 marks	Att 2
6(b)(iii)	Evaluate the sum to infinity of this series (that is:	$\sum_{n=0}^{\infty} u_n).$

Evaluate sum to infinity	5 marks	Att 2
6(b)(iii)		
$\sum_{n=0}^{\infty} u_n = 4 + 4\frac{1}{2} = 8\frac{1}{2}.$	Note:	$\underset{n \to \infty}{\text{Limit}} \frac{1}{2^{n+1}} = 0 \text{ and } \underset{n \to \infty}{\text{Limit}} \frac{1}{3^{n+1}} = 0$

Blunders (-3)

B1 Error in formula or limit.

Slips (-1)

S1 Arithmetic error.

Attempts (2 marks)

A1 Formula for sum to infinity of geometric series with some substitution.

	QUESTION	7
Part (a) Part (b) Part (c)	10 (5, 5) marks 20 (5, 5, 5, 5) mar 20 (5, 5, 5, 5) mar	
Part (a)	10 (5, 5)marks	Att (2, 2)
Part (a)(i) Part (a)(ii)	5 marks 5 marks	Att 2 Att 2
7(a) Two unbia	used dice, each with faces numbered	red from 1 to 6, are thrown.
(i)	What is the probability of getting	g a total equal to 8?
(ii)What is	s the probability of getting a total l	less than 8?
or count f	Ta total equal to 8) $=\frac{5}{36}$. From table.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7 (a) (ii) Number of favor	urable outcomes (total < 8)	5 6 7 8 6 7 8
Probability (to	bunt from table or by listing). tal less than 8) = $\frac{21}{36}$.	
	als > 8 = 10 \Rightarrow number of totals < tal less than 8) = $\frac{21}{36}$.	< 8 is $36 - 10 - 5 = 21$.

B1 Incorrect number of possible outcomes (each time).

Slips (-1)

S1 Arithmetic error.

- A1 Correct number of possible outcomes.
- A2 Correct number of favourable outcomes.
- A3 Relevant table or some listing of favourable outcomes.
- A4 Incorrect number of favourable outcomes from some relevant work.

Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)		
Part (b)(i)	10 (5, 5) marks	Att (2, 2)		
7(b) The table below shows the prices of various commodities in the year 2000, as a percentage of their prices in 1999. These are called <i>price relatives</i> . (For example, the price relative for <i>Food</i> , <i>Drink & Other Goods</i> is 105, indicating that the cost of these items was 5% greater in 2000 than in 1999.)				
	The table also shows the weight assigned to each commodity. The weight represents the importance of the commodity to the average consumer.			
CommodityWeightPrice in 2000 as % of price in 1999				
Housing	8	110		
Fuel and Transport	19	108		

Tobacco	5	116
Services	16	105
Clothing & Durable Goods	10	97
Food, Drink & Other Goods	42	105
	-	•

(i) Calculate the weighted mean of the price relatives in the table.

Σxw evalua Final soluti					5 mari 5 mari			Att 2 Att 2
7(b)(i)	w	8	19	5	16	10	42	$\therefore \sum w = 100$
	x	110	108	116	105	97	105	
	x.w	880	2052	580	1680	970	4410	$\therefore \sum x.w = 10572$
	:. Weighted mean = $\frac{\sum x.w}{\sum w} = \frac{10572}{100} = 105.72.$							

Blunders (-3)

B1 Σxw incorrect with relevant work (unless due to slip).

B2 Σw incorrect with relevant work (unless due to slip).

Slips (-1)

S1 Arithmetic error.

Attempts (2 marks)

A1 Σxw correct.

A2 Σw correct.

Worthless (0)

W1 takes $\Sigma w = 6$ or uses Σx for Σw .

Part (b)(ii)	10 (5, 5) marks	Att (2, 2)
7(b)(ii)	Calculate, correct to two decimal places, the change <i>Tobacco</i> is removed from consideration.	in the weighted mean if

New weighted mean	5 marks	Att 2
Finish	5 marks	Att 2
New . ∴ Ne 10:	$\sum w = 100 - 5 = 95$ $\sum x.w = 10572 - 580 = 9992$ ew weighted mean = $\frac{9992}{95} = 105.18$ 5.72 - 105.18 = 0.54 e mean decreases by 0.54.	

- B1 Σxw incorrect with relevant work (unless due to slip).
- B2 Σw incorrect with relevant work (unless due to slip).
- B3 Change in weighted mean not calculated.

Slips (-1)

- S1 Arithmetic error.
- S2 Change in weighted mean not correct to two places of decimals.

Attempts (2 marks)

- A1 *xw* correct at least once.
- A2 Σw correct.

Worthless (0)

W1 $\Sigma w = 5$ or uses Σx for Σw .

Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)

Part (c)(i)	5 marks	Att 2
7(c)		

A palindromic number is one that reads the same backwards as forwards, such as 727 or 38183.

(i) This year, 2002, is a palindromic year. When is the next palindromic year?

Part (c)(i)	5 marks	Att 2
7(c)(i)		
	Next palindromic year is 2112.	

Blunders (-3)

B1 A palindromic year after 2112 other than 38183.

Attempts (2 marks)

A1 Any correct palindromic year before 2002 other than 727.

Part ((c)(ii)	5 marks Att 2	
7(c)	(ii)	How many palindromic years are there from 1000 to 9999 inclusive?	

From 1000 to 9999 inclusive		5 marks		Att 2
7(c)(ii)	First digit Any digit ≠ 0 9	Second digit any digit 10	Third digit match 2 ^{nd.} digit 1	Fourth digit match 1 ^{st.} digit 1
	$\therefore 9 \times 10 \times 1 \times 1$	= 90		

Blunders (-3)

B1 Total = $9 \times 9 \times 1 \times 1$.

B2 Total = $10 \times 10 \times 1 \times 1$.

Slips (-1) S1 Arithmetic error.

Attempts (2 marks)

A1 Incomplete listing with at least one palindromic number identified within range.

Part (c)(iii)	10 (5, 5) marks	Att (2, 2)
7(c)(iii)	A whole number, greater than 9 and less than 10 000 What is the probability that the number is palindrom	·

Two or three digit palindromic numbers Final solution	5 marks 5 marks	Att 2 Att 2				
7(c)(iii)	C murits					
Number of two digit palindromic numbers $= 9 \times 1 = 9$.						
Number of three digit palindromic numbers = $9 \times 10 \times 1 = 90$.						
Number of four digit palindromic numbers $= 9 \times 10 \times 1 \times 1 = 90$.						
∴Total = 189.						
Number of possible numbers greater than 9 and less than $10\ 000 = 9990$.						
\therefore Probability = $\frac{1}{9}$	$\frac{189}{990} = \frac{7}{370}.$					

- B1 Incorrect total from listing.
- B2 Two digit palindromic years = 10×1 .
- B3 Three digit palindromic years = $9 \times 9 \times 1$.
- B4 Incorrect number of possible outcomes.
- B5 Probability not given.

Slips (-1)

S1 Arithmetic error.

Misreadings (-1)

M1 Possible outcomes = 9991.

- A1 Incomplete listing with at least one palindromic number identified within range.
- A2 Correct number of favourable outcomes.
- A3 Correct number of possible outcomes.
| | QUESTION 8 | |
|----------|--|------------------|
| Part (a) | 10 marks | Att 3 |
| Part (b) | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2) |
| Part (c) | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2) |
| Part (a) | 10 marks | Att 3 |
| 8(a) | Use integration by parts to find $\int x \ln x dx$. | |

Integra	ion 10 marks	Att 3
8(a)		
	$\int x \ln x dx = uv - \int v du.$	
;	$u = \ln x \implies du = \frac{1}{x}dx$; $dv = xdx \implies v$	$= \int x dx = \frac{1}{2} x^2.$
	: $\int x \ln x dx = \frac{1}{2} x^2 \ln x - \int \frac{1}{2} x^2 \cdot \frac{1}{x} dx = \frac{1}{2} x^2 \ln x$	$-\frac{1}{2}\int xdx$
	$= \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + \text{constant.}$	

- B1 Incorrect differentiation or integration.
- B2 Constant of integration omitted.
- B3 Incorrect 'parts' formula.

Slips (-1)

S1 Arithmetic error.

Attempts (3 marks)

- A1 Correct assigning to parts formula.
- A2 Correct differentiation or integration.

Worthless (0)

W1 u = x, $dv = \ln x$ with no progress.

Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (b)(i)	5 marks	Att 2
8(b)	The _] (i)	perimeter of a sector of a circle of radius r is 8 metres. Express θ in terms of r , where θ is the angle of the sector in radians, as shown.	r θ r

Express θ in terms of r	5 marks	Att 2
8(b)(i)		
Perimete	er = 8 metres	
$2r + r\theta$	$= 8 \implies r\theta = 8 - 2r$	
$\theta = \frac{8}{2}$	$\frac{-2r}{r} = \frac{8}{r} - r.$	

- B1 Incorrect formula for length of arc.
- B2 θ not expressed in terms of *r*.

Slips (-1)

S1 Arithmetic error.

Attempts (2 marks)

A1 $2r + r\theta = 8$ and stops.

Part (b)(ii)	5 marks	Att 2
8(b)(ii)	Hence, show that the area of the sector, in squar	e metres, is $4r - r^2$.

Area of sector	5 marks	Att 2
8(b)(ii)		
	Area of sector = $A = \frac{1}{2}r^2\theta = \frac{1}{2}r^2\left(\frac{8-2r}{r}\right)$	
	$\therefore A = 4r - r^2.$	

Error in area formula. **B**1

Slips (-1)

S1 Arithmetic error.

Attempts (2 marks)

A1 Correct substitution into area formula.

Part (b)(iii)	10 (5, 5) marks	Att (2, 2)
8(b)(iii) Find	the maximum possible area of the sector.	
Establish $r = 2$	5 marks	Att 2
Maximum area	5 marks	Att 2
8(b)(iii)	$A = 4r - r^2 \implies \frac{dA}{dr} = 4 - 2r.$	
	$\frac{dA}{dx} = 0 \implies 4 - 2r = 0$ $\therefore r = 2.$	
	For $r = 2m$, maximum area $= A = 4m^2$. $\left[\text{Note: } \frac{d^2 A}{dr^2} = -2 < 0 \implies \text{maximum.} \right]$	
or	$4r - r^2 = 4 - (r^2 - 4r + 4)$	
	$= 4 - (r-2)^2.$	
	Maximum value for $r - 2 = 0$	
	\therefore Maximum = 4.	

Blunders (-3)

- Error in differentiation. B1
- $4 (r^2 4r + 4)$ and stops. B2
- B3 Maximum area not evaluated.

Slips (-1)**S**1 Arithmetic error.

Attempts (2 marks)

Correct differentiation. A1 A2

 $\frac{dA}{dr} = 0$ and stops.

Note

No marks awarded if candidate has not shown area is $4r - r^2$ and uses that area now.

Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)(i)	5 marks	Att 2
8(c)		
The	Maclaurin series for $\tan^{-1} x$ is $x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^7}{5} - \frac{x^7}{5} - \frac{x^7}{5} - \frac{x^7}{5} - \frac$	
	series is convergent when $ x < 1$.	
(i)	Write down the first four terms in the series expansi	ion for $\tan^{-1}\frac{1}{2}$.

First four terms of tan ⁻¹ x	5 marks	Att 2
8(c)(i)		
$\tan^{-1}x = x -$	$-\frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	
$\tan^{-1}\frac{1}{2} = \frac{1}{2}$	$- \frac{\left(\frac{1}{2}\right)^3}{3} + \frac{\left(\frac{1}{2}\right)^5}{5} - \frac{\left(\frac{1}{2}\right)^7}{7}$	+
$=\frac{1}{2}$	$-\frac{1}{24}+\frac{1}{160}-\frac{1}{896}+$	

Incorrect substitution. B1

Slips (-1) S1 Arithmetic error.

Attempts (2 marks) A1 ½ substituted into some terms.

Part (c)(ii)	10 marks (5, 5)	Att (2, 2)	
8(c)(ii) Use the fact	that $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}$ to derive a	a series expansion for π ,	
	rms up to and including seventh pow		
Expansion of $\tan^{-1}\frac{1}{3}$	5 montro	A ## 3	
5	5 marks	Att 2	
Expansion for π	5 marks	Att 2	
$\pi = 4 \begin{bmatrix} \tan \theta \\ \tan \theta \end{bmatrix}$	$= \frac{1}{3} - \frac{\left(\frac{1}{3}\right)^{3}}{3} + \frac{\left(\frac{1}{3}\right)^{5}}{5} - \frac{\left(\frac{1}{3}\right)^{7}}{7} + \dots$ $= \frac{1}{3} - \frac{1}{81} + \frac{1}{1215} - \frac{1}{15309} + \dots$ $h^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}$ $- \frac{1}{24} + \frac{1}{160} - \frac{1}{896} + \frac{1}{3} - \frac{1}{81} + \frac{1}{1215} - \frac{1}{160} + \dots$		
Blunders (-3) B1 Incorrect substitution. B2 Not all terms included. B3 Not expressed as $\pi = \dots$. Slips (-1) S1 S1 Arithmetic error.			
Attempts (2 marks) A1 $\frac{1}{3}$ substituted int	o some terms.		
Worthless (0) W1 $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}1$ and substitutes $x = 1$.			
Part (c)(iii)	5 marks	Att 2	
8(c)(iii) Use these terms to find an approximation for π . Give your answer correct to four decimal places.			
Approximation of π	5 marks	Att 2	
8(c)(iii) π	f = 4[0.787521] = 3.1409.		
<i>Blunders</i> (–3) B1 Error in evaluation	on of x^3 , x^5 , x^7 .		

Slips (–1) S1 Ari

S1 Arithmetic error.

Attempts (2 marks) A1 Some evaluation.

	QUESTION 9	
Part (a)	10 (5, 5) marks	Att (2, 2)
Part (b)	20 (10, 5, 5) marks	Att (3, 2, 2)
Part (c)	20 (5, 5, 5, 5)marks	Att (2, 2, 2, 2)
Part (a)	10 (5, 5) marks	Att (2, 2)
9(a)	z is a random variable with standard normal distribution.	

Find P(z < -0.46).

$P(z < -0.46) = 1 - P(z \le 0.46)$ Final solution	o) 5 marks 5 marks	Att 2 Att 2
9(a)		
P(z <	-0.46)	
= 1-	$P(z \le 0.46)$	
= 1-	0.6772	
= 0.32	228	

Blunders (-3)

- B1 Incorrect area defined.
- B2 Incorrect reading of tables.

Slips (-1)

S1 Arithmetic error.

- A1 Area required correctly on normal curve.
- A2 $P(z \le 0.46)$.

Part (b)

20 (10, 5, 5) marks

Att (3, 2, 2)

Part (b)(i) 10 marks Att 3
9(b)	A certain player takes 25 penalty shots during this year's season. Each penalty shot is
	independent of all others. Experience from previous seasons indicates that on each
	occasion the probability that this player scores is $\frac{3}{5}$.
	(i) Find the probability that she scores exactly 15 of the 25 times.

Find probability	10 marks	Att 3
9(b)(i)	2	
	$n = 25, r = 15, p = \frac{3}{5}, q = \frac{2}{5}.$	
Pro	bability = ${}^{n}C_{r}p^{r}q^{n-r} = {}^{25}C_{15}\left(\frac{3}{5}\right)^{15}\left(\frac{2}{5}\right)^{10} \approx 0.1$	61.

Blunders (-3)

Error in binomial. B1

Incorrect q. B2

Slips (-1)

S1Arithmetic error.

Attempts (3 marks) A1 Use of binomial.

A2
$$\left(\frac{3}{5}\right)^{15}$$
.

Part (b)(ii) 10 (5, 5) marks	Att (2, 2)
9(b)(ii)	Use the normal approximation to the binomial distributi probability that she scores at least 18 times.	on to estimate the

Correct \bar{x} and σ Final solution	5 marks 5 marks	Att 2 Att 2
9(b)(ii)		
$\overline{x} = np = 25\left(\frac{3}{5}\right)$	= 15 ; $\sigma = \sqrt{npq} = \sqrt{25}$	$\overline{\left(\frac{3}{5}\right)\!\!\left(\frac{2}{5}\right)} = \sqrt{6}$
$x \ge 18$ in the binomia	al corresponds to $x \ge 17.5$ in the	e normal (continuity correction)
$z = \frac{x - \overline{x}}{\sigma}$	$= \frac{17.5 - 15}{\sqrt{6}} = 1.02.$	
$P(x \ge 17.5)$	$5) = P(z \ge 1.02)$	
	= 1 - P(z < 1.02)	
	= 1 - 0.8461 = 0.1539.	

- B1 Incorrect formula for \bar{x} or σ .
- B2 No continuity correction [has $P(x \ge 18)$ when $\overline{x} = 15$].
- B3 Error in determining area required.
- B4 Incorrect reading from tables.

Slips (-1) S1 Arithmetic error.

Attempts (2 marks)

A1 $\overline{x} = np$ or $\sigma = \sqrt{npq}$.

A2
$$z = \frac{x - \overline{x}}{\sigma}$$
.

A3 A correct step in outlining area required.

Part	(c)
------	-----

20 (5, 5, 5, 5)marks

Att (2, 2, 2, 2)

Part (c)(i)	5 marks	Att 2
9(c)(i)	P(E F) denotes the conditional probability of " <i>E</i> given <i>F</i> ". Write down an equation to express the relationship between $P(F)$, $P(E F)$ and $P(E \cap F)$.	

Part (c)(i)	5 m	arks	Att 2
9(c)(i)	$P(E \mid F) = \frac{P(E \cap F)}{P(F)} \text{of}$	or $P(E \cap F)$	$= P(F).P(E \mid F).$

Blunders
$$(-3)$$

B1
$$P(E \mid F) = \frac{P(E \cap F)}{P(E)}$$
.

B2
$$P(E \cap F) = P(F).P(F \mid E).$$

Attempts (2 marks)

A1 $P(E).P(E \mid F) = P(E \cup F).$

 Part (c) (ii)
 10 (5, 5) marks
 Att (2, 2)

 9(c)(ii)
 E and F are events such that $P(E | F) = \frac{1}{2}$, $P(F | E) = \frac{1}{3}$, and $P(E \cap F) = \frac{1}{7}$. Find $P(E \cup F)$.

P(E) or P(F) correct To finish	5 marks 5 marks	Att 2 Att 2
9(c)(ii) $P(E F) = \frac{1}{2},$	$P(F \mid E) = \frac{1}{3}$, and $P(E \cap F)$	$=\frac{1}{7}$
$P(E \cap F) = 1$ $\frac{1}{7} = P(F) \cdot \frac{1}{2}$	$P(F). P(E \mid F)$ $\Rightarrow P(F) = \frac{2}{7}.$	
$P(E \cap F) = 1$ $\frac{1}{7} = P(E) \cdot \frac{1}{3}$	$P(E). P(F \mid E)$ $\Rightarrow P(E) = \frac{3}{7}.$	
	$P(E) + P(F) - P(E \cap F)$ $\frac{3}{7} + \frac{2}{7} - \frac{1}{7}$	
$\therefore P(E \cup F) =$	$= \frac{4}{7}.$	

B1 Theory error in calculating P(E) or P(F).

Slips (-1) S1 Arithmetic error.

Attempts (2 marks)

A1 $P(E \cap F) = P(E) \cdot P(F \mid E)$ or $P(E \cap F) = P(F) \cdot P(E \mid F)$.

A2 $P(E \cup F) = P(E) + P(F) - P(E \cap F).$

A3 $P(E \cup F) = P(E) + P(F).$

Part (c) (i	ii) 5 marks	Att 2
9(c)(iii)	Are the events E and F in part (ii) independent?	? Give a reason for your answer.

Are events	E and F independent? 5 marks	Att 2
9(c)(iii)	<i>E</i> and <i>F</i> are not independent events as :	
	$P(E \mid F) \neq P(E)$ or $P(F \mid E) \neq P(F)$	or $P(E \cap F) \neq P(E).P(F).$

Blunders (-3)

B1 $P(E \mid F) \neq P(F)$.

Attempts (2 marks)

A1 Answer NO without reason, given some work of value in part (c)(ii).

QUESTION 10

Part (a)	10 (5, 5) marks	Att (2, 2)
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)	20 (5, 10, 5) marks	Att (2, 3, 2)

Part (a)	10 (5, 5) marks	Att (2, 2)
10(a)	The set $\{0, 2, 4, 6\}$ is a group under addition modulo 8.	
	Draw up its Cayley table and write down the inverse of each	element.

Cayley table Inverses					marks marks		Att 2 Att 2	
10(a)	$+ \mod 8$ 0 2 4	0 0 2 4	2 2 4 6	4 4 6 0	6 6 0 2	Inverses	$0^{-1} = 0$ $2^{-1} = 6$ $4^{-1} = 4$ $6^{-1} = 2$	
	6	6	0	2	4			

- Blunders (-3)B1One incorrect entry in Cayley table.B2All inverses not given.

- Incomplete Cayley table. One inverse given. A1
- A2

Att (2, 2, 2, 2)

Part (b)(i)	5 marks			Att	2		
10(b)(i)		*	а	b	С	d	
The incomplete table shown is the Cayley table		а	с				
for th	the group $\{a,b,c,d\},*$.	b					
(i)	Explain why b must be the identity element.	с			b		
		d				с	

<i>b</i> identity e	lement		5 marks	Att 2
10(b)(i)				
	a * a = c	\Rightarrow	<i>a</i> is not the identity element.	
	c * c = b	\Rightarrow	c is not the identity element.	
	d * d = c	\Rightarrow	d is not the identity element.	
	$\therefore b$ must be	e the i	dentity element, as $\{a,b,c,d\}$,* is a gro	up.

Blunders (-3)

B1 one statement missing, e.g. $d*d = c \Rightarrow d$ not identity.

Attempts (2 marks) A1 $a*a = c \Rightarrow a$ not identity.

Part (b)(ii)	10	mark	s (5, 5	5)	Att (2, 2)	
10(b)(ii) Copy an	d complet	te the	table.			
<i>b</i> row and column correct Complete rest of table	_	narks narks				Att 2 Att 2
10(b)(ii)		1				1
	*	а	b	С	d	
	а	с	а	d	b	
	b	а	b	с	d	
	с	d	с	b	a	
	d	b	d	а	с]

Blunders (-3)

- B1 *b* row and column not completed correctly.
- B2 Rest of table not completed correctly.

- A1 A correct entry in *b* row or column.
- A2 A correct new entry in other rows or columns.

Part (b) (iii)	5 marks	Att 2
10(b)(iii)	List all of the subgroups of $\{a, b, c, d\}, *$	
List subgrou	ps 5 marks	Att 2
10(b)(iii)	Group is of order four.	
	By Lagrange, the subgroups can only be of orde	er 1, 2 or 4.
Subgrou	up of order one (improper subgroup) must contain up of order two must contain identity and elemen up of order four (improper subgroup) is the group	t of order two i.e. $\{b, c\}$
	\therefore subgroups are $\{b\}$, $\{b, c\}$, $\{a, b, c, d\}$.	
Blunders (-3) B1 One in) ncorrect subgroup.	
Attempts (2 m	narks)	
- ·	orrect subgroup.	
A2 Two i	ncorrect subgroups.	
Part (c)	20 marks (5, 10, 5)	Att (2, 3, 2)
Part (c)(i)	5 marks	Att 2

G,* is a group and H is a non-empty subset of G .
Give a set of conditions that must be verified in order to show that H ,* is a
subgroup of G ,*.

Set of conditi	ions 5 marks	Att 2
10(c)(i)		
	For all $a, b \in H$ then $a * b \in H$. \therefore	H,* is closed.
	For all $a \in H$ then $a^{-1} \in H$. \therefore Inver	ses exist and hence identity.
or		
	For all $a, b \in H$ then $a * b^{-1} \in H$. Close	sure and inverses.

Inverses not established. **B**1

Closure not established. B2

Attempts (2 marks)A1Closure only established.A2Inverses only established.

Part (c)(ii)	10 marks	Att 3
10(c)(ii)	G is a group and $g \in G$.	Prove that the set $H = \{g^n \mid n\}$	$\in \mathbf{Z}$ is a subgroup of <i>G</i> .

Prove the set	t H is a subgroup of G	10 marks	Att 3
10(c)(ii)			
	Let g^x , $g^y \in H$ for x, y	$\in Z.$	
	$g^x \cdot g^y = g^{x+y}$. But $x + y$	$y \in Z$ as Z is closed	under addition.
	$\therefore g^{x+y} \in H \implies H \text{ is}$	closed.	
	$(g^x)^{-1} = g^{-x}$. But $x \in$	$Z \implies -x \in Z.$	
	$\therefore g^{-x} \in H \implies \text{each e}$	lement of <i>H</i> has an in	nverse.
	\therefore <i>H</i> is a subgroup of <i>G</i> .		

- B1 Closure not fully established.
- B2 Inverses not fully established.

Attempts (3 marks)

A1 $g^{x}.g^{y}$ A2 $(g^{x})^{-1}$.

Part (c)(iii	5 marks	Att 2	
10(c)(iii)	C is a cyclic group of order 10 and x is a generator of C. Describe all the subgroups of C in terms of x.		

Describe su	bgroups in terms of x 5 marks	Att 2
10(c)(iii)	<i>C</i> is of order 10. By Lagrange, order of subgroups is a factor of 10. i.e. of order 1, 2, 5, 10.	
	\therefore Four subgroups generated by x, x^2, x^5, x^{10} .	

Blunders (-3)

- B1 One subgroup missing.
- B2 Incorrect subgroup and three correct subgroups.

- A1 One correct subgroup given.
- A2 Order of a subgroup stated.

	QUESTION 11	
Part (a)	10 (5, 5) marks	Att (2, 2)
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (a)	10 (5, 5) marks	Att (2, 2)
11(a)	The equation of an ellipse is $\frac{x^2}{25} + \frac{y^2}{9} = 1$.	
	Calculate the eccentricity of the ellipse.	

$b^2 = a^2(1-e^2)$	5 marks	Att 2
Correct e	5 marks	Att 2
11(a)		
	$a^2 = 25, b^2 = 9.$	
	$b^2 = a^2(1-e^2) \implies 9 = 25(1-e^2)$	
	$e^2 = 1 - \frac{9}{25} = \frac{16}{25}.$	
	$\therefore e = \frac{4}{5}.$	

B1 Value of *a* or *b* incorrect.

Slips (-1) S1 Arithmetic error.

Attempts (2 marks) A1 $a^2 = 25$ or $b^2 = 9$. A2 b incorrect, e.g. $b = a^2(1-e^2)$. A3 $b^2 = a^2(1+e^2)$.

Part	(b)
------	------------

Att (2, 2, 2, 2)

Part (b)(i)	5 marks	Att 2
11(b)(i)		
	Let <i>f</i> be the transformation $(x, y) \rightarrow (x', y')$, where	
	x' = 3x + 4y + 1	
	y' = 4x - 3y + 2.	
	Let $p(x_1, y_1)$ and $q(x_2, y_2)$ be two distinct points.	
	Find the distance between $f(p)$ and $f(q)$ in terms of	$x_1, x_2, y_1 \text{ and } y_2.$

f(p)f(q)	5 marks	Att 2
11 (b) (i)		
$p(x_1, y_1)$	$\therefore f(p) = (3x_1 + 4y_1 + 1, 4x_1 - 3y_1)$	(1+2)
$q(x_2, y_2)$	$\therefore f(q) = (3x_2 + 4y_2 + 1, 4x_2 - 3y_2)$	v ₂ + 2)
f(p)f(q)	$= \sqrt{\left[3(x_1 - x_2) + 4(y_1 - y_2)\right]^2 + \left[4(x_1 - x_2) + 4(y_1 - y_2)\right]^2}$	$\overline{4(x_1-x_2)-3(y_1-y_2)]^2}$.

Blunders (-3)

B1 Error in distance formula.

B2 f(p) or f(q) incorrect.

Slips (-1)

S1 Arithmetic error.

Attempts (2 marks)

A1 f(p) or f(q) correct.

A2 Distance formula with some correct substitution.

Note Accept |f(p)f(q)| in non-simplified form.

15 (5, 5, 5) marks Part (b)(ii) Att (2, 2, 2) Hence, or otherwise, prove that f is a similarity transformation. 11(b)(ii) |f(p) f(q)| simplified 5 marks Att 2 **Reduced to** $\sqrt{k^2 |pq|}$ 5 marks Att 2 Conclusion 5 marks Att 2 11(b)(ii) $|f(p)f(q)| = \sqrt{[3(x_1 - x_2) + 4(y_1 - y_2)]^2 + [4(x_1 - x_2) - 3(y_1 - y_2)]^2}$ $= \sqrt{25(x_1 - x_2)^2 + 25(y_1 - y_2)^2}$ $= 5\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ = 5|pq|.

 \therefore *f* is a similarity transformation.

Blunders (-3)

- B1 Cancellation not made.
- B2 Terms not regrouped to $\sqrt{k^2 |pq|}$.
- B3 |pq| found but final conclusion not stated.

Slips (-1)

S1 Arithmetic error.

- A1 Some simplification or reduction made.
- A2 |pq| found.

Part (c)	20 marks (5, 5, 5, 5)	Att (2, 2, 2, 2)
Part (c)(i)	5 marks	Att 2
11(c)		
$[u'v']$ is a chord of the ellipse $E: \frac{x^2}{100} + \frac{y^2}{25} = 1$. The midpoint of $[u'v']$ is $p'(8, 2)$.		
(i) Write down a lin	ear transformation <i>f</i> that maps the unit of	circle $S: x^2 + y^2 = 1$ onto E .

Linear transformation	5 marks	Att 2
11(c)(i)		(10 0)
$f\colon (x, y) \to (10x, 5)$	y) or matrix of transformation	ation $f = \begin{pmatrix} 0 & 5 \end{pmatrix}$.

B1 Matrix of *f* with main diagonal correct but minor diagonal incorrect.

Attempts (2 marks)

A1 Incorrect transformation but with 10*x* or 5*y*.

Part (c(ii)	5 marks	Att 2	
11(c)(ii)	Write down the co-ordinates of p , where $f(p) = p'$.		

Co-ordinates of p	5 marks	Att 2
11(c)(ii) 10 <i>x</i> = 8	$\Rightarrow x = \frac{4}{5}, 5y = 2 \Rightarrow y = \frac{2}{5}.$	$\therefore p\left(\frac{4}{5}, \frac{2}{5}\right).$
or $p = \begin{pmatrix} 10 & 0 \\ 0 & -1 \end{pmatrix}^{-1}$	$\binom{8}{2} = \frac{1}{50} \binom{5}{0} \frac{0}{10} \binom{8}{2} = \frac{1}{50} \binom{40}{20}$	$\therefore p\left(\frac{4}{2}, \frac{2}{2}\right)$.
$p = \begin{pmatrix} 0 & 5 \end{pmatrix}$	$\binom{2}{2} = \frac{1}{50}\binom{0}{0} \frac{10}{2} = \frac{1}{50}\binom{20}{20}$	$\therefore p\left(\frac{-}{5}, \frac{-}{5}\right)$.

Blunders (-3)

B1 Error in inverse matrix.

B2 Error in matrix multiplication.

Slips (-1) S1 Arithmetic error.

- A1 One component of point *p* found.
- A2 10x = 8 or 5y = 2.

Part (c) (iii)	5 marks	Att 2
11(c)(iii)	Noting that, in a circle, the line joining the cent perpendicular to the chord, find the equation of f(u) = u' and $f(v) = v'$.	-

Equation of <i>uv</i>	5 marks	Att 2
11(c)(iii)		
С	Centre of circle <i>S</i> is (0, 0). $p\left(\frac{4}{5}, \frac{2}{5}\right)$ is midpoint of c	hord $[uv]$.
S	lope $op = \frac{\frac{2}{5}}{\frac{4}{5}} = \frac{1}{2} \implies slope uv = -2.$	
e	quation of $uv: y - \frac{2}{5} = -2\left(x - \frac{4}{5}\right)$	
и	$xy: 10x + 5y = 10 \implies 2x + y = 2.$	

- B1 Error in slope formula.
- B2 Error in perpendicular slope.
- B3 Error in equation of line.
- B4 Incorrect point substituted into line equation.

Slips (-1)

S1 Arithmetic error.

Attempts (2 marks)

A1 Slope *op*.

11(c)(iv)

Find the co-ordinates of u and v, and hence the co-ordinates of u' and v'.

Find the co-ordinates of u and v 5 marks

Att 2

$2x + y = 2 \cap x^2 + y^2 = 1.$
$y = -2x+2 \implies x^2 + (-2x+2)^2 = 1$
$5x^2 - 8x + 3 = 0 \implies (x - 1)(5x - 3) = 0$
$\therefore x = 1 \text{ or } x = \frac{5}{3}$
$\therefore u(1, 0) \text{ and } v\left(\frac{3}{5}, \frac{4}{5}\right).$
$u' = f(1, 0) \qquad \Rightarrow u' = \ (10, 0)$
$v' = f\left(\frac{3}{5}, \frac{4}{5}\right) \implies v' = (6, 4).$

Blunders (-3)

- B1 Error in squaring.
- B2 Error in factors.

Slips (-1)

S1 Arithmetic error.

- A1 Solving between line and circle.
- A2 Correct quadratic.
- A3 Finds *u* and *v* and stops.