

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2011

Marking Scheme

MATHEMATICS

Higher Level

Contents

Page

GENERAL GUIDELINES FOR EXAMINERS – PAPER 1	4
QUESTION 1	5
QUESTION 2	9
QUESTION 3	12
QUESTION 4	15
QUESTION 5	17
QUESTION 6	21
QUESTION 7	24
QUESTION 8	
GENERAL GUIDELINES FOR EXAMINERS – PAPER 2	
QUESTION 1	
QUESTION 2	41
QUESTION 3	44
QUESTION 4	47
QUESTION 5	50
QUESTION 6	53
QUESTION 7	56
QUESTION 8	60
QUESTION 9	64
QUESTION 10	67
QUESTION 11	70
MARCANNA BREISE AS UCHT FREAGAIRT TRÍ GHAEILGE	73

GENERAL GUIDELINES FOR EXAMINERS – PAPER 1

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips numerical errors
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

(-1)

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2, ... etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work of merit is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

		QUESTION 1	
Part	: (a)	15 (10, 5) marks	Att (3, 2)
Part	: (b)	15 (5, 5, 5) marks	Att (2, 2, 2)
Part		20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part	: (a)	15 (10, 5) marks	Att (3, 2)
1.	(a)	Simplify fully $\frac{x+1}{x-1} - \frac{x-1}{x+1} - \frac{4}{x^2-1}$	

Setting up fraction Fully simplified	10 marks 5 marks	Att 3 Att 2
1 (a)		
x+1 $x-1$ 4	$=\frac{(x+1)(x+1)-(x-1)(x-1)-4}{(x+1)(x-1)}=\frac{x^2+2x+3}{(x+1)(x-1)}$	$+1-x^2+2x-1-4$
$\frac{1}{x-1} - \frac{1}{x+1} - \frac{1}{x^2-1}$	$-\frac{(x+1)(x-1)}{(x+1)(x-1)}$	(x+1)(x-1)
=	$=\frac{4x-4}{(x+1)(x-1)}=\frac{4(x-1)}{(x+1)(x-1)}=\frac{4}{x+1}$	

- Blunders (-3)B1Factors once onlyB2Indices
- B3 Incorrect cancellation

Part (b)	15 (5, 5, 5) marks	Att (2, 2, 2)
1 (b)		
(i)	Prove the factor theorem for polynomials of degree 2.	
	That is, given that $f(x) = ax^2 + bx + c$ and k is a number such that	
	f(k) = 0, prove that $(x - k)$ is a factor of $f(x)$.	
(ii)	The factor theorem also holds for polynomials of higher degree.	
	Find the values of <i>n</i> for which $(x + k)$ is a factor of the polynomial	
	$g(x) = x^n + k^n$, where $k \neq 0$.	

(b) (i) $f(x) - f(k)$ factorised	5 marks	Att 2
Finish	5 marks	Att 2
1 (b) (i)		
f(x) = ax	$x^2 + bx + c.$	
f(k) = ak	$k^2 + bk + c.$	
$\therefore f(x) -$	$f(k) = a(x^{2} - k^{2}) + b(x - k) = a(x + k)$	(x-k)+b(x-k).
$\therefore f(x) -$	f(k) = (x-k)(ax+ak+b).	
$\therefore (x-k)$) is a factor of $f(x) - f(k)$.	
But $f(k$	$=0, \Rightarrow (x-k)$ is a factor of $f(x)$.	

Blunders (-3)B1IndicesB2FactorsB3 $f(k) \neq 0$

Slips (-1)

S1 Numerical

	OR	
(b) (i) Setting up division	5 marks	Att 2
Finish	5 marks	Att 2
1 (b) (i)		
$f(x) = ax^2 + bx$	c + c	
$f(k) = ak^2 + bk$	k + c	
f(x) - f(k) = a	$ax^2 + b - ak^2 - bk$	
ax + (ak)		
$(x-k)ax^2 + bx$	$-ak^2-bk$	
$ax^2 - akx$		
(ak +	$(b)x-ak^2-bk$	
(ak +	$(b)x-ak^2-bk$	
	0	
But $f(k) = 0$,		
$\Rightarrow f(x) = (x - $	k)[ax + (ak + b)]	

Blunders (-3)

B1 Indices

Slips (-1)

S1 Numerical

S2 Not changing sign when subtracting in division

(b) (ii)	5 marks	Att 2
1 (b) (ii)		
	$(x+k)$ is a factor of $g(x) \Rightarrow g(-k)=0$.	
	$\therefore (-k)^n + k^n = 0 \implies (-1)^n k^n + k^n = 0.$	
	$\therefore n \text{ is odd } \Rightarrow n = \{1, 3, 5, 7, 9, \dots\}.$	

Blunders (-3)

- B1 Deduction root from factor
- B2 Indices
- B3 $(-1)^n$
- B4 Solution set not stated
- B5 Only one value *n*

Part (c)	Part	(c)
----------	------	-----

1 (c)	$(x-a)^2$ is a factor of $2x^3 - 5ax^2 + 8abx - 36a$, where $a \neq 0$.
	Find the possible values of <i>a</i> and <i>b</i> .

Set up division	5 marks	Att 2
Remainder = 0	5 marks	Att 2
Co-efficients = 0	5 marks	Att 2
Finish	5 marks	Att 2

1 (c)	
	$(x-a)^2 = x^2 - 2ax + a^2.$
	2x-a
	$x^{2} - 2ax + a^{2} \sqrt{2x^{3} - 5ax^{2} + 8abx - 36a}$
	$2x^{3} - 4ax^{2} + 2a^{2}x$
	$\overline{-ax^2-2a^2x+8abx-36a}$
	$-ax^2 + 2a^2x - a^3$
	$\overline{-4a^2x+8abx-36a}+a^3$
	$\therefore (-4a^2 + 8ab)x + (a^3 - 36a) = 0.$
	$\therefore -4a^2 + 8ab = 0 \Rightarrow a - 2b = 0 \text{ and } a^2 - 36 = 0, \text{ as } a \neq 0.$
	$\therefore a = \pm 6 \text{ and } b = \pm 3.$
	ie $a = 6$ and $b = 3$ or $a = -6$ and $b = -3$.

Blunders (-3)

- Expansion of $(x-a)^2$ once only B1
- Indices B2
- Not like to like when equating coefficients Not two values of 1st variable B3
- B4

Slips (-1)

S1 Not changing sign when subtracting

Attempts

- Any effort at division for 2 marks only A1
- (x-a) as factor. A2

OR

Other factor	5 marks	Att 2
Correct multiplication	5 marks	Att 2
Equating coefficients	5 marks	Att 2
Values	5 marks	Att 2
1 (a)		

1 (c)	
	One factor $=(x^2-2ax+a^2)$
	Other factor = $(2x - \frac{36}{a})$
	$(x^{2}-2ax+a^{2}).(2x-\frac{36}{a}) = 2x^{3}-5ax^{2}+8abx-36a$
	$2x^{3} - 4ax^{2} + 2a^{2}x - \frac{36}{a}x^{2} + 72x - 36a = 2x^{3} + (-5a)x^{2} + 8abx - 36a$
	$2x^{3} + (-4a - \frac{36}{a})x^{2} + (2a^{2} + 72)x - 36a = 2x^{3} + (-5a)x^{2} + (8ab)x - 36a$
	Equating coefficients
	(i) $(-4a - \frac{36}{a}) = (-5a)$
	$-4a^2 - 36 = -5a^2$
	$a^2 = 36$
	$a = \pm 6$
	(ii) $(2a^2 + 72) = 8ab$
	72 + 72 = 8ab
	$\Rightarrow ab = 18$
	$a = \pm 6$
	$\Rightarrow b = \pm 3$

Blunders (-3) B1 Indices

- Expansion of $(x-a)^2$ once only B2
- Not like to like when equating coefficients Not 2 values of 1st variable B3
- B4

Attempts

Other factor not linear, Att 2 marks only. A1

Part (a)	15 (10, 5) marks	Att (3, 2)
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)	15 (5, 5, 5) marks	Att (2, 2, 2)

Part (a)	15 (10, 5) marks	Att (3, 2)
2 (a)	Solve for $x: 2x-1 \le 3$, where $x \in \mathbb{R}$.	
Limits	10 marks	Att 3
Range	5 marks	Att 2
2 (a)		

$|2x-1| \le 3 \implies -3 \le 2x-1 \le 3.$ $\therefore -1 \le x \le 2.$

Blunders (-3)

- B1 Upper limit
- Lower limit B2
- Inequality sign Indices B3
- B4
- Incorrect range B5
- B6 No range

Slips (-1)

Numerical S1

S2 Not \geq or \leq

Attempts

A1 Inequality sign ignored

Quadratic inequality factorised		10 marks	Att 3
Range		5 marks	Att 2
	$ 2x-1 \le 3$ $(2x-1)^2 \le 9$ $4x^2 - 4x + 1 \le 9$ $4x^2 - 4x - 8 \le 0$ $x^2 - x - 2 \le 0$ (x-2)(x+1) = 0 $\Rightarrow x = 2 \text{ or } x = -1$ $f(x) \le 0$ $-1 \le x \le 2$	f(x)	

OR

B2InecB3FactB4RooB5DedB6IncoB7NoSlips (-1)S1NurS2Not	pansion of $(2x-1)^2$ once only quality sign	
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
	and $\frac{1}{\alpha}$ are roots of the quadratic equation $3kx^2 - 18tx + (2k+3) = 0$ ere <i>t</i> and <i>k</i> are constants. Find the value of <i>k</i> . If one of the roots is four times the other, find the possible values	
Va (b) (ii) Va	roduct of roots 5 marks alue k 5 marks alue a 5 marks alue t 5 marks $\alpha\left(\frac{1}{\alpha}\right) = \frac{2k+3}{3k} \Rightarrow \frac{2k+3}{3k} = 1 \Rightarrow k = 3.$	Att 2 Att 2 Att 2 Att 2 Att 2
2 (b) (ii)	$k = 3 \implies 9x^2 - 18tx + 9 = 0 \implies x^2 - 2tx + 1 = 0.$ $\alpha = \frac{4}{\alpha} \implies \alpha^2 = 4 \implies \alpha = \pm 2.$ Sum of roots = $\alpha + \frac{1}{\alpha} = 2t \implies t = \frac{1}{2} \left(\pm \frac{5}{2}\right) = \pm \frac{5}{4}.$	

Blunders (-3)

- B1 Indices
- Sum of roots B2
- B3 Product of roots
- B4
- Statement quadratic equation once only Only one value of t, where 2 values of α found. B5

Slips (-1)

S1 Numerical

Part (c)		t (2, 2, 2)
2 (c) Let $f(x) =$	$=\frac{1}{x^2-6x+a}$, where <i>a</i> is a constant.	
	$x^2 - 6x + a$ we that if $a = 13$, then $f(x) > 0$ for all $x \in \mathbf{R}$.	
	We that if $a = 13$, then $f(x) < 1$ for all $x \in \mathbf{R}$.	
(iii) Find	the range of values of <i>a</i> such that $0 < f(x) < 1$, for all $x \in \mathbf{R}$.	
Part (c) (i)	5 marks	Att 2
(c) (ii)	5 marks 5 marks	Att 2
(c) (iii)	5 marks	Att 2
2 (c) (i)	1 1	
	$\frac{1}{x^2 - 6x + 13} = \frac{1}{(x - 3)^2 + 4}.$	
	$(x-3)^2 \ge 0$ for all $x \in \mathbf{R}$. $\Rightarrow (x-3)^2 + 4 > 0$.	
	$\therefore \frac{1}{2} > 0 \implies f(x) > 0 \text{ when } a = 13.$	
	$x^2 - 6x + 13$ $y(x) > 0$ when $u = 15$.	
2 (c) (ii)		
	$\frac{1}{x^2 - 6x + 13} = \frac{1}{(x - 3)^2 + 4}.$	
	$(x-3)^2 \ge 0 \implies (x-3)^2 + 4 > 1.$	
	$\therefore \frac{1}{x^2 - 6x + 13} < 1 \implies f(x) < 1 \text{ when } a = 13.$	
2 (c) (iii)		
	$\frac{1}{x^{2}-6x+a} = \frac{1}{x^{2}-6x+9+(a-9)} = \frac{1}{(x-3)^{2}+(a-9)}$	
	to get $f(x)$ always > 0, we need $a > 9$, and get $f(x)$ always less than 1, we need denominator always > 1, so $a > 1$	0
	bining these two conditions yields the overall condition $a > 10$.	0.

Blunders (-3)

- B1 Not $(x-3)^2$
- B2 $[(x-3)^2+4] \ge 0$
- B3 $(x-3)^2 \ge 0$
- B4 $[(x-3)^2+4] \ge 1$
- B5 Deduction each time from work shown
- B6 No deduction each time
- B7 Inequality sign

Part (a)	15 (10, 5) marks	Att (3, 2)
Part (b)	15 (5, 5, 5) marks	Att (2, 2, 2)
Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (a)	15 (10, 5) marks	Att (3, 2)

	- (-) - /	
3. (a)	Express $\frac{1+2i}{2-i}$ in the form of $a+bi$, where $i^2 = -1$.	

Multipli	cation by conjugate 10 marks	Att 3
Value	5 marks	Att 2
3 (a)	$\frac{1+2i}{2-i} = \frac{(1+2i)(2+i)}{(2-i)(2+i)} = \frac{2+5i+2i^2}{4-i^2} = \frac{5i}{5} = i.$	

Blunders (-3) B1 Indices

i

B2

Slips (-1) S1 Numerical

Attempts

A1 Not using correct conjugate

Part (b)	15 (5, 5, 5) marks	Att (2, 2, 2)
3 (b) (i)	Find the two complex numbers $a + bi$ such that	
	$(a+bi)^2 = -3+4i.$	
(ii)	Hence solve the equation $x^2 + x + 1 - i = 0$.	
(i) Equation	ons 5 marks	Att 2
Finish	5 marks	Att 2
(ii) Solve	5 marks	Att 2
3 (b) (i)		
	$(a+bi)^2 = -3+4i \implies a^2 - b^2 + 2abi = -3+4i.$	
	$\therefore a^2 - b^2 = -3$ and $ab = 2$.	
	$b = \frac{2}{a} \implies a^2 - \frac{4}{a^2} = -3 \implies a^4 + 3a^2 - 4 = 0.$	
	$(a^2 - 1)(a^2 + 4) = 0 \implies a^2 - 1 = 0 \text{ and } a^2 + 4 \neq 0.$	
	$\therefore a = \pm 1 \implies b = \pm 2 \implies$ solution is $\pm (1 + 2i)$.	

3 (b) (ii)

$$x^{2} + x + (1 - i) = 0 \implies x = \frac{-1 \pm \sqrt{1 - 4(1 - i)}}{2} = \frac{-1 \pm \sqrt{-3 + 4i}}{2}.$$

$$\therefore x = \frac{-1 \pm (1 + 2i)}{2} \text{ by part (i).}$$

$$x = \frac{-1 + 1 + 2i}{2} \text{ or } x = \frac{-1 - 1 - 2i}{2} \implies x = i \text{ or } x = -1 - i.$$

Blunders (-3)

- B1 Expansion of $(a+ib)^2$
- B2 Indices
- B3 *i*
- B4 Not like to like
- B5 Factors
- B6 Quadratic formula
- B7 Excess values (not real)
- B8 Only one complex number found
- B9 Incorrect deduction root from function

Slips (-1)

S1 Answers not simplified

Part (c) 20 (5, 5, 5, 5) marks Att (2, 2, 2, 2) 3 (c) (i) Let A and B be 2×2 matrices, where A has an inverse. Show that $(A^{-1}BA)^n = A^{-1}B^nA$ for all $n \in \mathbb{N}$. Let $P = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$ and $M = \begin{pmatrix} -5 & 3 \\ -10 & 6 \end{pmatrix}$. Evaluate $P^{-1}MP$ and hence $(P^{-1}MP)^n$. (ii) Hence, or otherwise, show that $M^n = \underline{M}$, for all $n \in \mathbb{N}$. (iii) 5 marks Att 2 Part (c) (i) (c) (ii) $P^{-1}MP$ 5 marks Att 2 5 marks Att 2 $(P^{-1}MP)^n$ (c) (iii) 5 marks Att 2 3 (c) (i) $(A^{-1}BA)^n = (A^{-1}BA)(A^{-1}BA)(A^{-1}BA)\dots(A^{-1}BA)$ $= A^{-1}B(AA^{-1})B(AA^{-1})....(AA^{-1})BA$ $= A^{-1}BIBI....BA = A^{-1}BBBB...BA$ $= A^{-1}B^n A$ (Or by induction) 3 (c) (ii) $P^{-1}MP = \frac{1}{(6-5)} \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \begin{pmatrix} -5 & 3 \\ -10 & 6 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$ $(P^{-1}MP)^n = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$ 3 (c) (iii) $\left(P^{-1}MP\right)^n = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \implies P^{-1}M^n P = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$ $\therefore M^{n} = P \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} P^{-1} = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ -5 & 3 \end{pmatrix} = \begin{pmatrix} -5 & 3 \\ -10 & 6 \end{pmatrix}$ =M.

Blunders (-3) B1 P^{-1} once only

- B2 $P^{-1}.P \neq I$
- B3 Indices
- B4 Incorrect order of multiplication

Note: $P^{-1}MP$ must be a diagonal matrix in part (c)(ii) to merit 2nd 5 marks; otherwise 0 marks.

	QUESTION 4	
Part (a)	10 (5, 5) marks	Att (2, 2)
Part (b)	40 (5, 5, 5, 5, 10, 5, 5) marks	Att (2, 2, 2, 2, 3, 2, 2)
Part (a)	10 (5, 5) marks	Att (2, 2, 2)
4(a)	In an arithmetic sequence, the third term is -3 and first term and the common difference.	the sixth term is -15 . Find the
T_{3}, T_{6}	5 marks	Att 2
a and d	5 marks	Att 2
4 (a)		
	a + 2d = -3	
	a + 5d15	

$$\frac{d+3d=-15}{3d=-12} \implies d=-4 \text{ and } a=5.$$

First term = 5, common difference = -4.

(NOTE: *a* and *d* can be in any order)

Blunders (-3)

- B1 Term of arithmetic sequence
- B2 Formula for term once only
- B3 Incorrect *a*
- B4 Incorrect d

Slips (-1) S1 Numerical

(b) (i) Correct u_{n+1} and u_{n+2}	5 marks	Att 2
Verify	5 marks	Att 2
(b) (ii) Correct u_{k+1}	5 marks	Att 2
Express	5 marks	Att 2
(b) (iii) S_{∞}	10 marks	Att 3
(b) (iv) S_n	5 marks	Att 2
Least value <i>n</i>	5 marks	Att 2

$$2u_{n+2} + u_{n+1} - u_n = 2l(\frac{1}{2})^{n+2} + 2m(-1)^{n+2} + l(\frac{1}{2})^{n+1} + m(-1)^{n+1} - l(\frac{1}{2})^n - m(-1)^n.$$

= $l(\frac{1}{2})^n(\frac{1}{2} + \frac{1}{2} - 1) + m(-1)^n(2 - 1 - 1) = 0.$

4 (b) (ii)

$$\begin{split} a_k &= u_k + u_{k+1} \implies a_k = l \left(\frac{1}{2} \right)^k + m (-1)^k + l \left(\frac{1}{2} \right)^{k+1} + m (-1)^{k+1}.\\ \therefore a_k &= l \left(\frac{1}{2} \right)^k \left(\frac{3}{2} \right) + m (-1)^k (1-1)\\ &= \frac{3}{2} l \left(\frac{1}{2} \right)^k. \end{split}$$

4 (b) (iii)

$$\sum_{k=1}^{\infty} a_k = \frac{3}{2}l\left(\frac{1}{2}\right) + \frac{3}{2}l\left(\frac{1}{2}\right)^2 + \frac{3}{2}l\left(\frac{1}{2}\right)^3 + \dots + \frac{3}{2}l\left(\frac{1}{2}\right)^k + \dots$$

This is an infinite geometric series.
$$\therefore \sum_{k=1}^{\infty} a_k = \frac{\frac{3}{4}l}{1-\frac{1}{2}} = \frac{3}{2}l.$$

4 (b) (iv)

$$\sum_{k=1}^{n} a_{k} = \frac{\frac{3}{4}l\left[1 - \left(\frac{1}{2}\right)^{n}\right]}{1 - \frac{1}{2}} = \frac{3}{2}l\left[1 - \left(\frac{1}{2}\right)^{n}\right].$$

$$\sum_{k=1}^{n} a_{k} > (0.99) \sum_{k=1}^{\infty} a_{k} \implies \frac{3}{2}l\left[1 - \left(\frac{1}{2}\right)^{n}\right] > (0.99) \frac{3}{2}l.$$

$$\therefore 1 - \left(\frac{1}{2}\right)^{n} > 0.99 \implies \left(\frac{1}{2}\right)^{n} < 0.01 \implies n = 7.$$

Blunders (-3)

- B1 In u_{n+1} once only
- B2 In u_{n+2} once only
- B3 Indices
- B4 $(-1)^n$
- B5 Sum of geometric progression to infinity
- B6 Incorrect *a*
- B7 Incorrect *r*
- B8 Sum of *n* terms of geometric progression
- B9 Not using correct values in (iv) once only
- B10 Logs laws
- B11 Not least integer

Part (a)	10 (5, 5) marks	Att (2, 2)
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)	20 (5, 5, 10) marks	Att (2, 2, 3)
Part (a)	10 (5, 5) marks	Att (2, 2)

(a) Find the coefficient of x^8 in the expansion of $(x^2 - 1)^{10}$.

T7 Value	5 marks 5 marks	Att 2 Att 2
5 (a)	$[x^2 + (-1)]^{10}$ Let u_{r+1} be the <i>r</i> th term.	
	$u_{r+1} = {\binom{10}{r}} (x^2)^{10-r} (-1)^r$	
	$\Rightarrow k(x^{20-2r}) = k(x^8)$	
	$\Rightarrow 20 - 2r = 8$	
	12 = 2r	
	r = 6	
	Term: $u_7 = {\binom{10}{6}} (x^2)^4 (-1)^6 = {\binom{10}{4}} x^8 = 210x^8$ Coefficient: 210	
	OR	
	$[x^{2} + (-1)]^{10} = (x^{2})^{10} + {\binom{10}{1}}(x^{2})^{9}(-1)^{1} + {\binom{10}{2}}(x^{2})^{8}(-1)^{2}$	
	+ $\binom{10}{3}(x^2)^7(-1)^3$ + $\binom{10}{4}(x^2)^6(-1)^4$	
	$+\binom{10}{5}(x^2)^5(-1)^5+\binom{10}{6}(x^2)^4(-1)^6+\cdots$	
	$\Rightarrow u_7 = \binom{10}{6} (x^8)(1) = 210x^8$	
	Coefficient: 210	

Blunders (-3)

- B1 General term
- B2 Errors in binomial expansion once only
- B3 Indices

B4 Error value
$$\binom{n}{r}$$
 or no value $\binom{n}{r}$.

Part (b) 20 (5, 5, 5, 5) marks Att (2, 2, 2, 2) 5 (b) Solve the equation: **(i)** $\log_2 x - \log_2 (x - 1) = 4\log_4 2$. Solve the equation: (ii) $3^{2x+1} - 17(3)^x - 6 = 0.$ Give your answer correct to two decimal places. Part (b) (i) $\log f(x) = 2$ 5 marks Att 2 Value x 5 marks Att 2 5 (b) (i) $\log_2 x - \log_2 (x - 1) = 4\log_4 2$ $\therefore \log_2 \frac{x}{x-1} = \log_4 16 = 2$ $\therefore \frac{x}{x-1} = 4 \implies 4x-4 = x \implies x = \frac{4}{3}.$ Blunders (-3) B1 Logs laws

B2 Indices

Worthless W1 Drops 'log'

Part (b) (ii) Quadratic factorised
Value x5 marks
5 marksAtt 2
Att 25 (b) (ii) $3^{2x+1} - 17(3)^x - 6 = 0$. Let $y = 3^x$.
 $\therefore 3y^2 - 17y - 6 = 0$.
 $(y-6)(3y+1) = 0 \Rightarrow y = 6, y \neq -\frac{1}{3}$.
 $\therefore 3^x = 6 \Rightarrow x \log_e 3 = \log_e 6 \Rightarrow x = \frac{\log_e 6}{\log_e 3} = 1.63$.

Blunders (-3)

- B1 Indices
- B2 Factors once only
- B3 Root formula once only
- B4 Logs

B5 Uses
$$y = -\frac{1}{3}$$

Slips (-1)

- S1 Numerical
- S2 Not to 2 decimal places

Attempts

- A1 Not quadratic equation
- A2 Correct answer by trial and error

Part (c)		20 (5, 5, 10) marks	Att (2, 2, 3)
5 (c)			
	Prove by induction t	hat 9 is a factor of $5^{2n+1} + 2^{4n+2}$, for all $n \in \mathbb{N}$.	
$\mathbf{D}_{\mathbf{r}} = \mathbf{f}(\mathbf{r})$	D (1)	5 m cela	A 44 D
Part (c)	$\frac{P(1)}{P(k)}$	5 marks 5 marks	Att 2 Att 2
	P(k+1)	10 marks	Att 2 Att 3
5 (c)			
	Test for $n = 1$.		
	$P(1): 5^3 + 2^6 = 189$	$9 = 9 \times 21.$	
	\therefore True for $n = 1$.		
	Assume true for $n =$	<i>k</i> .	
	$P(k): 5^{2k+1}+2^{4k+2}$	is divisible by 9.	
	Test for $n = k + 1$.		
	$P(k+1): 5^{2k+3}+2^{2k+3}$	$^{4k+6} = 25.5^{2k+1} + 16.2^{4k+2} = (9+16).5^{2k+1} + 16.2^{4k+2}$	
		$=9.5^{2k+1}+16(5^{2k+1}+2^{4k+2})$, which is divisible	by 9.
	\therefore True for $n = k + 1$		
	So, whenever $P(k)$	is true, $P(k+1)$ true.	
	Since $P(1)$ true, the	n, by induction, $P(n)$ true for all $n \in \mathbb{N}$.	

* Note: accept n = 0 as base case.

OR

5 (c)	To prove $5^{2n+1} + 2^{4n+2}$ is divisible by 9.
	Test $n=1$
	$P(1): 5^3 + 2^6 = 125 + 64 = 189 = 9(21)$ ⇒ True for $n = 1$
	Assume true for $n = k$ $P(k): (5^{2k+1}+2^{4k+2})$ is divisible by 9 (*)
	To prove: $(5^{2k+3} + 2^{4k+6})$ is divisible by 9 Let $f(k) = 5^{2k+1} + 2^{4k+2}$ Given the assumption that $f(k)$ is divisible by 9, then $f(k+1)$ will be divisible by 9 if and only if $[f(k+1) - f(k)]$ is divisible by 9.
	<i>ctd</i> .

B1 matces B2 $n \ge 2$ Slips (-1)

S1 Numerical

Note: Must prove P(1) step. Not sufficient to state P(n) true for n=1

Part (a)	15 marks	Att 5
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)	15 (5, 5, 5) marks	Att (2, 2, 2)

Att 5

Part (a)

(a)

15 marks

Differentiate $\cos^2 x$ with respect to *x*.

6 (a)

 $f(x) = \cos^2 x \implies f'(x) = -2\cos x \sin x.$

Blunders (-3)

B1 Differentiation

Attempts

A1 Error in differentiation formula (chain rule)

Part (b)		20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
6 (b) The	equation of a curve is	$y = e^{-x^2}.$	
(i)	Find $\frac{dy}{dx}$.		
(ii) (iii)		of the turning point of the curve. is turning point is a local maximum	l or
Part (b) (i		5 marks	Att 2
(11	i) $f'(x) = 0$	5 marks	Att 2
(ii	Turning point	5 marks 5 marks	Att 2 Att 2
6 (b) (i) 6 (b) (ii)	$\frac{dy}{dx} = e^{-x^2} \left(-2x\right)$ $\frac{dy}{dx} = 0 \implies e^{-x^2} \left(-2x\right)$	(). $(2x) = 0 \implies x = 0 \text{ and } y = 1.$ Turning	ng point is (0,1).
6 (b) (iii)	$\frac{d^2 y}{dx^2} = e^{-x^2} \left(-2x\right)$ For $x = 0$, $\frac{d^2 y}{dx^2}$	$x(-2x) - 2e^{-x^{2}} = e^{-x^{2}} (4x^{2} - 2).$ $\frac{y}{4} = -2e^{0} = -2 < 0 \implies (0,1) \text{ is a loc}$	cal maximum.

Blunders (-3)B1IndicesB2DifferentiationB3 $e^{-x^2} = 0$ B4No 2nd differential

Attempts

A1 Error in differentiation formula (chain rule)

Note: Over simplified work in (i) can lead to attempt at most in (ii) and (iii).

Part (c)	15 (5, 5, 5) marks	Att (2, 2, 2)
6 (c) The	function f is defined as $x \to \frac{2x}{x+1}$, where $x \in \mathbb{R} \setminus \{-1\}$.	
(i) (ii)	Find the equations of the asymptotes of the curve $y = f(x)$. <i>P</i> and <i>Q</i> are distinct points on the curve $y = f\{x\}$. The tangent at <i>Q</i> the tangent at <i>P</i> . The co-ordinates of <i>P</i> are (1, 1). Find the co-ordinates of <i>Q</i> .	is parallel to
(iii)	Verify that the point of intersection of the asymptotes is the midpoin	nt of $[PQ]$.
Part (c) (i (i (i	i) 5 marks	Att 2 Att 2 Att 2
6 (c) (i)		1100 2
	x = -1 is the vertical asymptote. $\lim_{x \to \infty} \frac{2x}{x+1} = \lim_{x \to \infty} \frac{2}{1+\frac{1}{x}} = 2 \implies y = 2$ is a horizontal asymptote.	
6 (c) (ii)	$f'(x) = \frac{2(x+1) - 2x(1)}{(x+1)^2} = \frac{2}{(x+1)^2}. \text{ Slope at } P(1,1) = \frac{2}{4} = \frac{1}{2}.$ Slope at $Q = \frac{1}{2} \Rightarrow \frac{2}{(x+1)^2} = \frac{1}{2} \Rightarrow (x+1)^2 = 4.$ $\therefore x+1 = \pm 2 \Rightarrow x = 1 \text{ or } x = -3. \therefore Q \text{ is } (-3,3).$	
	OR	

	$(x+1)^2 = 4$		
	$x^2 + 2x + 1 - 4 = 0$		
	$x^2 + 2x - 3 = 0$		
	(x+3)(x-1) = 0		
	$\Rightarrow x + 3 = 0$	or	x - 1 = 0
	x = -3	or	$\mathbf{x} = 1$
	\downarrow		\downarrow
	Q(-3,3)		<i>P</i> (1,1)
6 (c) (iii)	Asymptotes intersect a $P(1, 1)$ and $Q(-3, 3)$. Mid-point of $[PQ]$ is	,),

Blunders (-3)

- B1 Asymptotes
- B2 Limits
- B3 Differentiation
- B4 Indices
- B5 Formula for mid-point line

Slips (-1)

S1 Numerical

Attempts

A1 Error in differentiation formula

Note: Cannot get $2^{nd} 5$ marks in (c) (ii) if slope at Q not equal to slope at P.

Part (a)	10 (5, 5) marks	Att (2, 2)
Part (b)	25 (10, 10, 5) marks	Att (3, 3, 2)
Part (c)	15 (10, 5) marks	Att (3, 2)
Part (c)	15 (10, 5) marks	Att

Part (a)	10 (5, 5) marks	Att (2, 2)
7 (a) Find the slope of	f the tangent to the curve $x^2 + y^3 = x - 2$ at the p	oint (3, -2).

Differentiation	5 marks	Att 2
Slope	5 marks	Att 2
7 (a)	$3y^2 \frac{dy}{dx} = 1 \Rightarrow \frac{dy}{dx} = \frac{1-2x}{3y^2}$. \therefore Slope of tangent at $(3, -2) = \frac{-5}{12}$.	1111 2

Blunders (-3)

B1 Differentiation

B2 Indices

B3 Incorrect value of x or no value of x in slope

B4 Incorrect value of y or no value of y in slope

Slips (-1)

S1 Numerical

Attempts

A1 Error in differentiation formula

A2 $\frac{dy}{dx} = 2x + 3y^2 \frac{dy}{dx} = 1$ and uses the two $\left(\frac{dy}{dx}\right)$ terms

Part (b)	25 (10, 10, 5) marks	Att (3, 3, 2)
7 (b) A c	curve is defined by the parametric equations	
	$x = \frac{t-1}{t+1}$ and $y = \frac{-4t}{(t+1)^2}$, where $t \neq -1$.	
(i)	Find $\frac{dx}{dt}$ and $\frac{dy}{dt}$.	
(ii)	Hence find $\frac{dy}{dx}$, and express your answer in terms of <i>x</i> .	
Part (b)	dx dt 10 marks	Att 3
-	dy 10 marks	Att 3
-	dy 5 marks	Att 2
7 (b) (i)	$\frac{dx}{dt} = \frac{1(t+1) - 1(t-1)}{(t+1)^2} = \frac{2}{(t+1)^2}.$ $\frac{dy}{dt} = \frac{-4(t+1)^2 + 4t(2)(t+1)}{(t+1)^4} = \frac{-4(t+1) + 8t}{(t+1)^3} = \frac{4(t-1)}{(t+1)^3}.$	
7 (b) (ii)	$\frac{dy}{dt} = \frac{dy}{dt} \times \frac{dt}{dt} = \frac{4(t-1)}{(t+1)^3} \times \frac{(t+1)^2}{2} = \frac{2(t-1)}{t+1} = 2x.$	
	(-3) ferentiation	
B2 Indi	ices	

Error in getting $\frac{dy}{dx}$ B3

Attempts A1 Error in differentiation formula

$$\frac{dy}{dx} = \frac{-\cos^2 y}{(x+1)^2}$$
$$= \frac{-1}{(x+1)^2} \cdot \frac{(x+1)^2}{2x^2 + 2x + 1}$$
$$= \frac{-1}{2x^2 + 2x + 1}$$

Blunders (-3)

- Differentiation **B**1
- B2 Indices
- B3
- B4
- Error in value of $\tan y$ Error in value of $\cos y$ Sides of triangle once only B5

Attempts

A1 Error in differentiation formula and hence Att 2 at most in simplification

Part (c) (ii)	5 marks	Att 2
7 (c) (ii)		
Diagram A is	correct.	
	Diagram <i>B</i> , as these curves are not "parallel" (i.e. identical up to a vert	ical
	which is necessary because their derivatives are equal for all x).	
	Diagram <i>C</i> as these graphs are increasing, whereas they should be	
decreas	sing, because their derivatives are negative for $x > 0$.	
	OR	
	Given $f'(x) = g'(x)$	
	$\Rightarrow m_1 = m_2$ (same slopes)	
	\Rightarrow parallel curves	
	(1) -1 (0) -1 (0)	
	$f'(x) = \frac{-1}{2x^2 + 2x + 1} < 0$ when $x > 0$	
	\Rightarrow Both $f(x)$ and $g(x)$ are decreasing functions.	
Г	Diagram A: correct	
	Diagram A: correct	
	Diagram B: not parallel curves	
L	Diagram C: increasing curves	

Blunders (-3)

B1 Incorrect statement

Part (a)	15 marks	Att 5
Part (b)	25 (5, 5, 5, 5, 5) marks	Att (2, 2, 2, 2, 2)
Part (c)	10 (5, 5) marks	Att (2, 2)

Part (a) 15 marks Att 5 $\sqrt{x}dx$.

8 (a) Find
$$\int (x^3 + \sqrt{x^3})^2 dx^2 + \sqrt{x^3}$$

8 (a)

$$\int \left(x^3 + \sqrt{x}\right) dx = \frac{1}{4}x^4 + \frac{2}{3}x^{\frac{3}{2}} + c.$$

Blunders (-3)

- B1 Integration
- Indices B2
- B3 No 'c'

Part (b)	25 (5, 5, 5, 5, 5) marks	Att (2, 2, 2, 2, 2)
8 (b) (i)	Evaluate $\int_{0}^{2} \frac{x+1}{x^2+2x+2} dx$.	
(ii)	Evaluate $\int_{0}^{2} \frac{x^2 + 2x + 2}{x+1} dx$.	

Part (b) (i) Correct substitution Integration Finish	5 marks 5 marks 5 marks	Att 2 Att 2 Att 2
8 (b) (i)	$\int_{0}^{2} \frac{x+1}{x^2+2x+2} dx$. Let $u = x^2 + 2x + 2 \implies du = (2x + 2)d$	ʻx.
	$=\frac{1}{2}\int_{2}^{10}\frac{du}{u}=\frac{1}{2}[\log u]$	$_{e}u\Big]_{2}^{10} = \frac{1}{2}\Big[\log_{e}10 - \log_{e}2\Big] = \frac{1}{2}\log_{e}5 = \log_{e}\sqrt{5}$	-

Blunders (-3)

- Integration B1
- B2 Differentiation
- B3 Logs
- Limits B4
- Incorrect order in applying limits B5

Not calculating substituted limits B6

Not changing limits B7

Slips (-1)

S1 Numerical

Part (b) (ii) Integration Finish	5 marks 5 marks	Att 2 Att 2
8 (b) (ii)	$\frac{-2}{2} dx = \int_{0}^{2} \frac{(x+1)^{2} + 1}{x+1} dx = \int_{0}^{2} \left((x+1) + \frac{1}{x+1} - \frac{1}{x+1} \right)^{2} = \left[\frac{1}{2} x^{2} + x + \log_{e} (x+1) \right]_{0}^{2} = 2 + 2 + \log_{e} (x+1)$	$\frac{1}{2}dx$
$\int \frac{x^2 + 2x + 2}{x + 1} dx$	$\frac{x^2}{2}$	$\frac{x+1}{x^2+2x+2}$ $\frac{x+2}{x+2}$
$= \int [(x+1) + (x+1)] f(x+1) + (x+1) +$		$\frac{x+1}{1}$

Blunders (-3)

- Integration B1
- B2 Differentiation
- Logs B3
- B4 Limits
- B5
- Incorrect order in applying limits Not calculating substituted limits B6
- Not changing limits B7

Slips (-1)

- Numerical S1
- Not changing sign when subtracting in division S2

8 (c) Use integration methods to establish the formula $A = \pi r^2$ for the area of a disc of radius r.

Set up Finish	5 marks 5 marks	Att 2 Att 2
8 (c) $r^2 + v^2 =$	r^2 is a circle, centre (0,0), radius = r.	
	sc = $A = 4 \int_{-\infty}^{r} \sqrt{r^2 - x^2} dx$ $y = x^2 + y^2 = x^2 + x$	$=r^2$
	$\sin\theta \Rightarrow dx = r\cos d\theta.$	ĸ
$\therefore A = 4 \int_{0}^{\frac{\pi}{2}} dx$	$\sqrt{r^2 - r^2 \sin^2 \theta} .r \cos \theta d\theta = 4 \int_{-\infty}^{\frac{\pi}{2}} \sqrt{r^2 (1 - \sin^2 \theta)} .r \cos \theta d\theta$ $x = r \Rightarrow \theta$	$=\frac{\pi}{2}$
$=4\int_{0}^{\frac{\pi}{2}}r^{\frac{\pi}{2}}$	$x^{2}\cos^{2}\theta d\theta = (4r^{2})\frac{1}{2}\left[\theta + \frac{1}{2}\sin 2\theta\right]_{0}^{\frac{\pi}{2}}$ $x = 0 = 0$	$\Rightarrow \theta = 0$
$=2r^{2}$	$\left[\left(\frac{\pi}{2} + \sin\pi\right) - \left(0 + \sin0\right)\right]$	
$\therefore A = 2r$	$r^2\left(\frac{\pi}{2}\right) = \pi r^2.$	
	OR	
r	$\sin\theta \Rightarrow x = r\sin\theta$	x
<i>u0</i>	$= r \cos \theta \Rightarrow dx = r \cos \theta . d\theta \qquad $	
Froi	m diagram: $\cos \theta = \frac{\sqrt{r^2 - x^2}}{r} \Rightarrow r \cos \theta = \sqrt{r^2 - x^2}$ $\sqrt{r^2 - x^2}$	
<i>A</i> =	$4\int_{0}^{r} \sqrt{r^2 - x^2} dx$	
	$(r\cos\theta).(r\cos\theta).d\theta$	
= 4	$r^2 \cos^2 \theta d\theta$ etc.	

Blunders (-3)

- B1 Integration
- B2 Differentiation
- B3 Trig formula
- B4 Indices
- B5 Limits
- B6 Incorrect order in applying limits

- B7 Not calculating substituted limits
- B8 Not changing limits
- B9 Definition of $\sin \theta$
- B10 Definition of $\cos\theta$

Slips (-1)

- S1 Numerical
- S2 Trig value or no trig value

Attempts

A1 Error in differentiation formula or rules of integration

Worthless

W1 $x = r \sin \theta$ or $x = r \cos \theta$ not used in integration: 0 marks for 2nd 5

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2011

Marking Scheme

Mathematics – Paper 2

Higher Level

GENERAL GUIDELINES FOR EXAMINERS – PAPER 2

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2, ... etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work of merit is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

Part (a)	10 marks	Att 3
Part (b)	25 (10, 5, 5, 5) marks	Att (3, 2, 2, 2)
Part (c)	15 (10, 5) marks	Att (3, 2)

Part (a)	10 marks	Att 3
1 (a) Th	e following parametric equations define a circle:	
	$x = 2 + 3\sin\theta$, $y = 3\cos\theta$, where $\theta \in \mathbf{R}$.	
Wł	at is the Cartesian equation of the circle?	

Part (a)	10 marks	Att 3
1 (a)		
	$x = 2 + 3\sin\theta \qquad y = 3\cos\theta$	
	$(x-2)^2 + y^2 = 9\sin^2\theta + 9\cos^2\theta = 9\left(\cos^2\theta + \sin^2\theta\right)$	
	$\therefore (x-2)^2 + y^2 = 9.$	
OR		
	$x^2 = 4 + 12 \sin \theta + 9 \sin^2 \theta$ and $y^2 = 9 \cos^2 \theta$	
	$\Rightarrow x^2 + y^2 = 4 + 12\sin\theta + 9(\sin^2\theta + \cos^2\theta) = 13 + 12\sin\theta$	
	$\Rightarrow x^2 + y^2 = 13 + 12\left(\frac{x-2}{3}\right)$	
	$\Rightarrow x^2 + y^2 = 13 + 4x - 8$	
	$\Rightarrow x^2 + y^2 - 4x - 5 = 0$	
OR		
	$\cos^2\theta + \sin^2\theta = 1$	
	$\left(\frac{x-2}{3}\right)^2 + \left(\frac{y}{3}\right)^2 = 1 \qquad \Rightarrow (x-2)^2 + y^2 = 9$	
OR		
Ce	entre (2,0) and Radius $3 \Rightarrow (x-2)^2 + y^2 = 9$	

Blunders (-3)

B1 Incorrect squaring (apply once if same type of error)

- B2 $\cos^2 \theta + \sin^2 \theta \neq 1$
- B3 Incorrect centre or radius

Slips (-1)

S1 Arithmetic error

Attempts (3 marks)

- A1 Effort at expressing x^2 or y^2 in terms of θ
- A2 θ not eliminated
- A3 Centre (2,0) and/or radius 3 and stops
- A4 $x^2 + y^2 = 9$ with work

Worthless

W1 $x^2 + y^2 = 1$
Part (b)

25 (10, 5, 5, 5) marks

1 (b) Find the equation of the circle that passes through the points (0, 3), (2, 1) and (6, 5).

(b) One mediator 2 nd mediator	10 marks 5 marks	Att 3 Att 2
Centre	5 marks	Att 2
Finish	5 marks	Att 2
1 (b) Mid-point $[AB] = E(1, 2)$ Slope of $AB = \frac{3-1}{0-2} = -$ \therefore Equation $EQ: y-2 =$		Q. C(6,5)
Mid-point [BC] = D(4,3)	L	A(0,3) $D(4/3)$
Slope of $BC = \frac{5-1}{6-2} = 1$	\Rightarrow slope of $DQ = -1$.	E(1,2) $B(2,1)$
\therefore Equation $DQ: y-3 =$	$-1(x-4) \Rightarrow DQ: x+y=7.$	

$$\begin{aligned} x - y &= -1 \\ x + y &= 7 \\ \hline 2x &= 6 \implies x = 3 \text{ and } y = 4. \therefore \text{ Centre } Q \text{ is } (3, 4). \\ |AQ| &= r = \sqrt{(3 - 0)^2 + (4 - 3)^2} = \sqrt{10}. \quad \text{Equation of circle:} (x - 3)^2 + (y - 4)^2 = 10. \end{aligned}$$

OR

Seco Two	equation in two variables ond equation in two variables o values	5 marks	Att 3 Att 2 Att 2
Fini	ish	5 marks	Att 2
1(b)	$x^2 + y^2 + 2gx + 2fy + c = 0$		
1(b)	$\Rightarrow 0 + 9 + 2g(0) + 2f(3) + c$	$c = 0 \Longrightarrow 6f + c = -9.$	
	Also $4 + 1 + 4g + 2f + c = 0$	$0 \Longrightarrow 4g + 2f + c = -5 \dots(i)$	
	and $36+25+12g+10f+c=0$	$0 \Rightarrow 12g + 10f + c = -61 \dots (ii)$	
	()	nd (ii) $g = -3$ and $f = -4$ + $c = -9 \Rightarrow c = 15$ $a^{2} + y^{2} - 6x - 8y + 15 = 0$	

OR

· / -	propriate slopes tablishing semi circle	10 marks 5 marks	Att 3 Att 2
	ntre or radius	5 marks	Att 2
Fir	ıish	5 marks	Att 2
1(b)	Slope (0,3) and (2,1) Slope (2,1) and (6,5) \Rightarrow	-	
	But angle in a semi-circle right angle \Rightarrow (0,3) and (6,5) diameter extremities. Centre of circle (3,4)		5,5) diameter extremities.
	Radius: $\sqrt{(3-0)^2 + (4-3)^2} = \sqrt{10}$		
	Equation: $(x-3)^2 + (y-4)^2 = 10$		

- B1 Incorrect perpendicular slope
- B2 Error in slope formula
- B3 Error in equation of line formula
- B4 Error in radius formula
- B5 Equation of circle incomplete
- B6 Incorrect diameter
- B7 Error in general equation of circle
- B8 Equation of circle but radius not calculated

Slips (-1)

S1 Arithmetic errors

Attempts (3, 2, 2, 2 marks)

- A1 Product of perpendicular slopes = -1
- A2 Mixing *x* and *y* ordinates
- A3 Correct formula with some correct substitution
- A4 Some correct substitution into general equation of circle

Part (c)	15 (10, 5) marks	Att (3, 2)
1 (c) The	circle c_1 : $x^2 + y^2 - 8x + 2y - 23 = 0$ has centre A and radius r_1 .	
The	circle $c_2: x^2 + y^2 + 6x + 4y + 3 = 0$ has centre <i>B</i> and radius r_2 .	
(i)	Show that c_1 and c_2 intersect at two points.	
(ii)	Show that the tangents to c_1 at these points of intersection pass through	igh the
	centre of c_2 .	

Part (c)(i)	10 marks	Att 3
1 (c) (i)		
	$A(4, -1)$ and $r_1 = \sqrt{16 + 1 + 23} = \sqrt{40} = 2\sqrt{10}$.	
	$B(-3, -2)$ and $r_2 = \sqrt{9+4-3} = \sqrt{10}$.	
	$ AB = \sqrt{(4+3)^2 + (-1+2)^2} = \sqrt{50} = 5\sqrt{2}.$	
	So, $r_1 + r_2 = 3\sqrt{10} = \sqrt{90} > \sqrt{50}$ and $ r_1 - r_2 = \sqrt{10} < \sqrt{50}$	
	\Rightarrow circles intersect at two points.	

OR

Blunders (-3)

- B1 Relationship between $3\sqrt{10}$ and $\sqrt{50}$ or $\sqrt{40} + \sqrt{10} > \sqrt{50}$ not clearly established
- B2 Error in squaring
- B3 Error in factors
- B4 Incorrect conclusion stated or implied

Slips (-1)

- S1 Arithmetic errors
- S2 Not establishing both cases

Attempts (3 marks)

- A1 One centre and radius found
- A2 Expressing *y* in terms of *x* and stops

Part (c) (ii)	5 marks	Att 2
The tangent to c_1 and AQB are right $ AP ^2 + BP ^2 = r$ $\therefore \angle APB = 90^\circ =$ $\therefore PB$ is a tangent	The points of intersection of the circles. passes through <i>B</i> , if and only if <i>APB</i> t-angled triangles. $r_1^2 + r_2^2 = 40 + 10 = 50 = AB ^2$. $\Rightarrow AP \perp PB$. It to c_1 and contains centre <i>B</i> of c_2 . tangent to c_1 and contains centre <i>B</i> of c_2 .	c_1 r_1 B c_2 c_2

OR

Part (c)(ii)5 marksAtt 21(c)(ii)Slope diameter: centre(4,-1) and point of contact (-2,1)
 $\frac{-1-1}{4+2} = \frac{-1}{3} \Rightarrow$ slope of tangent equals 3
Equation of tangent: y-1=3(x+2) \Rightarrow 3x-y+7=0
But (-3,-2) lies on tangent since 3(-3)-1(-2)+7 = -9+2+7=0Slope (4,-1) and $\left(\frac{-6}{5}, \frac{-23}{5}\right)$ equals $\frac{9}{13} \Rightarrow$ slope of tangent equals $\frac{-13}{9}$ Equation of tangent: $y + \frac{23}{5} = \frac{-13}{9} \left(x + \frac{6}{5}\right)$ But (-3,-2) lies on this tangent since
LHS: $-2 + \frac{23}{5} = \frac{13}{5}$ and RHS: $\frac{-13}{9} \left(-3 + \frac{6}{5}\right) = \frac{-13}{9} \left(\frac{-9}{5}\right) = \frac{13}{5}$

Blunders (-3)

- B1 Incorrect use of Pythagoras
- B2 One case only
- B3 Incorrect slope or equation of line formula with substitution
- B4 Not verifying centre on tangents

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

- A1 Squaring one radius and stops
- A2 Equation of one tangent only and stops

Misreading(-1)

M1 Centres interchanged

Part (a)	15 marks	Att 5
Part (b)	20 (10, 10) marks	Att (3, 3)
Part (c)	15 (5, 5, 5) marks	Att (2, 2, 2)

Part (a)	15 marks	Att 5
2 (a) Find the v	alue of <i>s</i> and the value of <i>t</i> that satisfy the equation $s(\vec{i} - 4\vec{j}) + t(2\vec{i} + 3\vec{j}) = 4\vec{i} - 27\vec{j}$.	

Part (a)	15 marks	Att 5
2 (a)		
	$s(\vec{i} - 4\vec{j}) + t(2\vec{i} + 3\vec{j}) = 4\vec{i} - 27\vec{j}$	
	$\therefore \vec{i}(s+2t) + \vec{j}(-4s+3t) = 4\vec{i} - 27\vec{j}.$	
	$s + 2t = 4 \implies 4s + 8t = 16$	
	-4s + 3t = -27 $-4s + 3t = -27$	
	$11t = -11 \implies t = -1 \text{ and } s = 6.$	

Blunders (-3) B1 One value only

Slips (-1) S1 Arithmetic errors

Attempts (5 marks) A1 One equation in s and t

Part (b)	20 (10, 10) marks	Att (3, 3)
2 (b) \overrightarrow{OP}	$= 3\vec{i} - 4\vec{j}$ and $\overrightarrow{OQ} = 5\left(\overrightarrow{OP}^{\perp}\right)$.	
(i)	Find \overrightarrow{OQ} in terms of \vec{i} and \vec{j} .	
(ii)	Find $\cos \angle OQP $, in surd form.	

Part (b) (i) 10 marks	Att 3
2 (b) (i)		
	$\overrightarrow{OP} = 3\vec{i} - 4\vec{j} \implies \overrightarrow{OP}^{\perp} = 4\vec{i} + 3\vec{j}.$	
	$\therefore \ \overrightarrow{OQ} = 20\vec{i} + 15\vec{j}.$	

Blunders (-3)

B1 Error in $\overrightarrow{OP}^{\perp}$ B2 $\overrightarrow{OQ} = \left(\overrightarrow{OP}^{\perp}\right)$ Slips (-1) S1 Arithmetic errors

Attempts (3 marks)

A1 Relationship between a vector and related perpendicular stated or implied

Part (b) (ii)

$$\cos \angle OQP = \frac{\left(\overline{OQ}\right) \cdot \left(\overline{PQ}\right)}{\left|\overline{OQ}\right| \left|\overline{PQ}\right|} = \frac{\left(20\vec{i} + 15\vec{j}\right) \left(17\vec{i} + 19\vec{j}\right)}{\left|20\vec{i} + 15\vec{j}\right| \left|17\vec{i} + 19\vec{j}\right|}$$
$$= \frac{340 + 285}{\sqrt{400 + 225}\sqrt{289 + 461}} = \frac{625}{\sqrt{625}\sqrt{650}} = \frac{25}{5\sqrt{26}} = \frac{5}{\sqrt{26}}.$$

Blunders (-3)

B1 $\overrightarrow{PQ} \neq \overrightarrow{q} - \overrightarrow{p}$

- B2 Error in modulus formula
- B3 Answer not in single surd

Slips (-1)

S1 Arithmetic errors,

Attempts (3 marks)

- A1 $\cos \angle POQ$ calculated
- A2 $\cos \theta$ formula with some correct substitution

Part (c)15 (5, 5, 5) marksAtt (2, 2, 2)2(c)
$$ABC$$
 is a triangle and D is the mid-point of $[BC]$. A (i)Express \overrightarrow{AB} in terms of \overrightarrow{AD} and \overrightarrow{BC}
and express \overrightarrow{AC} in terms of \overrightarrow{AD} and \overrightarrow{BC} . B (ii)Hence, prove that $|AB|^2 + |AC|^2 = 2|AD|^2 + \frac{1}{2}|BC|^2$.Part (c) (i)10 (5, 5) marksAtt (2, 2)2 (c) (i)10

$$\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB} = \overrightarrow{AD} - \frac{1}{2}\overrightarrow{BC}.$$
$$\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{BC}.$$

Blunders (-3)

B1
$$\overrightarrow{DB} \neq -\frac{1}{2}\overrightarrow{BC}$$

B2 $\overrightarrow{DC} \neq \frac{1}{2}\overrightarrow{BC}$

Attempts (2, 2marks) A1 \overrightarrow{AB} and/or \overrightarrow{AC} as the sum of two vectors

Part (c) (ii)

2 (c) (ii)

$$|AB|^{2} = \overrightarrow{AB}.\overrightarrow{AB} = (\overrightarrow{AD} - \frac{1}{2}\overrightarrow{BC})(\overrightarrow{AD} - \frac{1}{2}\overrightarrow{BC}) = |AD|^{2} + \frac{1}{4}|BC|^{2} - \frac{1}{2}\overrightarrow{AD}.\overrightarrow{BC} - \frac{1}{2}\overrightarrow{BC}.\overrightarrow{AD}$$

$$|AC|^{2} = \overrightarrow{AC}.\overrightarrow{AC} = (\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BC})(\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BC}) = |AD|^{2} + \frac{1}{4}|BC|^{2} + \frac{1}{2}\overrightarrow{AD}.\overrightarrow{BC} + \frac{1}{2}\overrightarrow{BC}.\overrightarrow{AD}$$

$$\therefore |AB|^{2} + |AC|^{2} = 2|AD|^{2} + \frac{1}{2}|BC|^{2}.$$

Blunders (-3)

B1 Incorrect conclusion or no conclusion implied

Slips (-1) S1 Arithmetic errors

Attempts (2 marks)
A1
$$\left(\overrightarrow{AD} - \frac{1}{2}\overrightarrow{BC}\right)\left(\overrightarrow{AD} - \frac{1}{2}\overrightarrow{BC}\right) = |AD|^2 + \frac{1}{4}|BC|^2$$

A2 $|AB|^2$ or $\left(\overrightarrow{AD} - \frac{1}{2}\overrightarrow{BC}\right)\left(\overrightarrow{AD} - \frac{1}{2}\overrightarrow{BC}\right) = |AD|^2 + \frac{1}{4}|BC|^2 - \overrightarrow{AD} \cdot \overrightarrow{BC}$
A3 $\overrightarrow{AB} \cdot \overrightarrow{AB} = \overrightarrow{AB}^2$ or $|AB|^2$

Worthless (0 marks) W1 $|AB|^2 = |AD|^2 + \frac{1}{4}|BC|^2$

Part (a)	15 marks	Att 5
Part (b)	35 (20, 5, 5, 5) marks	Att (7, 2, 2, 2)

Part (a)

15 marks

Att 5

3 (a) P and Q are the points (-1, 4) and (3, 7) respectively.Find the co-ordinates of the point that divides [PQ] internally in the ratio 3 : 1.

3 (a)

Point is
$$\left(\frac{1(-1)+3(3)}{3+1}, \frac{1(4)+3(7)}{3+1}\right) = \left(\frac{8}{4}, \frac{25}{4}\right) = \left(2, 6\frac{1}{4}\right)$$

*Note: General Guideline 8 does not necessarily apply here

Blunders (-3)

B1 Incorrect ratio formula

B2 Incorrect translation

Slips (-1)

S1 Arithmetic errors

Attempts (5 marks)

A1 One correct ordinate

Worthless (0 marks) W1 Midpoint used once

Part (b)	35 (20, 5, 5, 5) marks	Att (7, 2, 2, 2)
3 (b) <i>f</i> is t	he transformation $(x, y) \rightarrow (x', y')$, where $x' = x - y$ and $y' = 2x + y$	- 3 <i>y</i> .
	the line $2x - y - 1 = 0$.	
(i)	Find the equation of $f(l_1)$, the image of l_1 under f .	
(ii)	Prove that f maps every pair of parallel lines to a pair of parallel line You may assume that f maps every line to a line.	nes.
(iii)	The line l_2 is parallel to the line l_1 . $f(l_2)$ intersects the x-axis at A' and the y-axis at B'. The area of the triangle $A'OB'$ is 9 square units, where O is the or Find the two possible equations of l_2 .	igin.
(iv)	Given that $A' = f(A)$ and $B' = f(B)$, show that $ \angle AOB \neq \angle A'OB $	B' .

3 (b) (i)

$$2x' = 2x - 2y$$

$$\underline{y' = 2x + 3y}$$

$$2x' - y' = -5y \implies y = \frac{1}{5}(-2x' + y')$$

$$x = x' + y \implies x = x' + \frac{1}{5}(-2x' + y') \implies x = \frac{1}{5}(3x' + y').$$

$$f(l_1): \frac{2}{5}(3x' + y') - \frac{1}{5}(-2x' + y') - 1 = 0 \implies 8x' + y' - 5 = 0.$$

B1 $f(l_1)$ not in form px' + qy' + r = 0 or y' = mx' + c

- B2 Incorrect matrix
- B3 Incorrect matrix multiplication

Slips (-1) S1 Arithmetic errors

Attempts (7 marks)

- A1 Effort at x or y expressed in terms of x' and y'
- A2 Correct matrix for *f* when finding $f(l_1)$
- A3 Correct image point on $f(l_1)$

Part (b) (ii)5 marksAtt 23 (b) (ii)
$$s_1 : ax + by + c = 0$$
 and $s_2 : ax + by + d = 0$ are two parallel lines. $f(s_1) : \frac{a}{5}(3x' + y') + \frac{b}{5}(-2x' + y') + c = 0 \Rightarrow (3a - 2b)x' + (a + b)y' + 5c = 0.$ $f(s_2) : \frac{a}{5}(3x' + y') + \frac{b}{5}(-2x' + y') + d = 0 \Rightarrow (3a - 2b)x' + (a + b)y' + 5d = 0$ Coefficients of x' and y' match, so these are parallel lines.ORSuppose $f(s_1)$ and $f(s_2)$ are not parallel. Then, they have a point in common, say P'.f is invertible, so let $P = f^{-1}(P')$. $P' \in f(s_1) \Rightarrow P \in s_1$ and $P' \in f(s_2) \Rightarrow P \in s_2$.This contradicts $s_1 \parallel s_2$, (unless they are identical, in which case so are their images).

Blunders (-3)

B1 $f(s_1)$ or $f(s_2)$ not in form px' + qy' + r = 0 or y' = mx' + c

- B2 Incorrect matrix
- B3 Incorrect matrix multiplication
- B4 Fails to finish correctly

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

- A1 One image point correct
- A2 Specific case e.g. using 2x-y-1=0 and 2x-y+k=0
- A3 Effort at image of one line only

Blunders (-3)

- B1 One value of *k*
- B2 Error in area formula
- B3 Fails to find l_2 from $f(l_2)$

Slips (-1) S1 Arithmetic errors

Attempts (2 marks) A1 A' or B'

Part (b) (iv) 5 marks Att 2
3 (b) (iv)

$$x = \frac{1}{5}(3x' + y') \text{ and } y = \frac{1}{5}(-2x' + y') \text{ and } A'\left(\frac{k}{8}, 0\right), B'(0, k).$$

$$\therefore A \text{ is } \left(\frac{3k}{40}, \frac{-2k}{40}\right) \text{ and } B \text{ is } \left(\frac{k}{5}, \frac{k}{5}\right).$$

$$|\angle A'OB'| = 90^{\circ}.$$
Slope $OA = \frac{\frac{-2k}{40}}{\frac{3k}{40}} = -\frac{2}{3} \text{ and } \text{ slope}OB = \frac{\frac{k}{5}}{\frac{k}{5}} = 1 \Rightarrow OA \text{ is not } \bot \text{ to } OB.$

$$\therefore |\angle AOB| \neq |\angle A'OB'|.$$

Blunders (-3)

- B1 A or B incorrect
- B2 Error in slope formula
- B3 No conclusion or incorrect conclusion

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

- A1 Effort to find *A* or *B* and stops
- A2 Effort at finding angle other than required angle
- A3 $|\angle A'OB'| = 90^\circ$

Part (a)	5 marks	Att 2
Part (b)	30 (10, 10, 10) marks	Att (3, 3, 3)
Part (c)	15 (5, 5, 5) marks	Att (2, 2, 2)

Part (a)	5 marks	Att 2
4 (a) Evaluate $\lim_{x\to 0} \left(\frac{s}{s}\right)$	$\frac{\sin 2x + \sin x}{3x} \bigg).$	

Part (a)
5 marks
Att 2

4 (a)
$$\lim_{x \to 0} \left(\frac{\sin 2x + \sin x}{3x} \right) = \frac{2}{3} \lim_{x \to 0} \left(\frac{\sin 2x}{2x} \right) + \frac{1}{3} \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = \frac{2}{3} + \frac{1}{3} = 1.$$
OR
$$\lim_{x \to 0} \left(\frac{\sin 2x + \sin x}{3x} \right) = \lim_{x \to 0} \left(\frac{2\sin x \cos x + \sin x}{3x} \right) = \frac{1}{3} \lim_{x \to 0} \left(\frac{\sin x (2\cos x + 1)}{x} \right) = \frac{1}{3} \cdot 1 \cdot (2 + 1) = 1.$$
OR
$$\lim_{x \to 0} \left(\frac{\sin 2x + \sin x}{3x} \right) = \lim_{x \to 0} \left(\frac{2\sin \frac{3x}{2} \cos \frac{x}{2}}{3x} \right) = \lim_{x \to 0} \left(\frac{\sin \frac{3x}{2} \cos \frac{x}{2}}{\frac{3x}{2}} \right) = 1 \cdot \cos 0 = 1$$

Blunders (-3)

- B1 Error rewriting as sum of two limits
- B2 Error in $\sin 2x$ as a product of two functions

B3 Mishandling
$$\frac{\sin\theta}{\theta}$$

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

- A1 Correct answer without work
- A2 Correct factors

Part (b)		30 (10, 10, 10) marks	Att (3, 3, 3)
4 (b)	Find all the solution	ns of the equation	
	sin	$2x + \cos x = 0$, where $0^\circ \le x \le 360^\circ$.	
Transfor	m equation	10 marks	Att 3
Solve for		10 marks	Att 3
Solutions		10 marks	Att 3
4 (b)			
	$\sin 2x + \cos x$	= 0	
	$2\sin x \cos x + \cos x$	$\cos x = 0 \implies \cos x (2\sin x + 1) = 0.$	
	$\therefore \cos x = 0$ or	or $\sin x = -\frac{1}{2}$.	
	$\therefore x = 90^\circ, 2^\circ$	70° or $x = 210^{\circ}, 330^{\circ}$.	
	Solution = $\{9\}$	90°, 210°, 270°, 330°}.	

- B1 Error in expansion of sin 2x
- B2 Error in factors
- B3 Error in roots
- B4 Missing and /or incorrect solutions (to a max of 3)
- B5 Solutions outside the range (to a max of 3)

Slips (-1)

S1 Arithmetic errors

Attempts(3, 3, 3)

- A1 sinx cosx + cosx = 0 and stops
- A2 One correct angle

Part (c) (i) Area in terms of radii	5 marks	Att 2
Area in t	erms of x	5 marks	Att 2
4 (c) (i)	Let radius of large circle = Shaded region = $\pi R^2 - \pi r$ But $R^2 = x^2 + r^2 \Rightarrow R^2$ \therefore Shaded region = πx^2 .	· · · · · ·	B x C

- B1 Area = $\pi r^2 \pi R^2$ or $\pi R^2 + \pi r^2$
- B2 Incorrect value of *x* for bisected chord
- B3 Incorrect use of Pythagoras

Slips (-1) S1 Arithmetic errors

Attempts (2, 2 marks)

A1 Bisector of chord indicated

Blunders (-3)

- B1 $\angle BOC$ incorrect
- B2 Incorrect radius substituted into sector formula
- B3 Incorrect use of Pythagoras i.e |OD| incorrect
- B4 Incorrect conclusion stated or implied

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

- A1 Area of sector with some substitution
- A2 Required area identified

Part (a)	10 marks	Att 3
Part (b)	15 (5, 5, 5) marks	Att (2, 2, 2)
Part (c)	25 (10, 10, 5) marks	Att (3, 3, 2)
Part (a)	10 marks	Att 3
5 (a)	Find the values of x for which $3\tan x = \sqrt{3}$, where $0^{\circ} \le x \le 360^{\circ}$.	

Part (a)	10 marks	Att 3
5 (a)	_	
	$3\tan x = \sqrt{3} \implies \tan x = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}}.$	
	$\therefore x = 30^{\circ}, 210^{\circ}.$	

Blunders (-3)

B1 Mishandling $\frac{\sqrt{3}}{3}$

B2 Each incorrect angle and/or omitted angle

B3 Each incorrect angle outside the range

Slips (-1) S1 Arithmetic errors

Attempts (3 marks)

A1 One correct angle without work

Part (b)	15 (5, 5, 5) marks	Att (2, 2, 2)
5 (b) (i) Prove that tan(A)	$(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}.$	
Part (b) (i) Expanding Finish	5 marks 5 marks	Att 2 Att 2
5 (b) (i) $tan(A+B)$	$) = \frac{\sin(A+B)}{\cos(A+B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$ $= \frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{1 - \frac{\sin A \sin B}{\cos A \cos B}} = \frac{\tan A + \tan B}{1 - \tan A \tan B}.$	

Blunders (-3)

- B1 Error in expanding $\sin(A+B)$
- B2 Error in expanding $\cos(A+B)$
- B3 sinAcosB+cosAsinB=sin(A+B) or equivalent not stated

Slips (-1) S1 Arithmetic error

Attempts (2, 2 marks)

Part (b) (ii)	5 marks	Att 2
5 (b) (ii) She	by that if $\alpha + \beta = 90^\circ$, then $\frac{\tan 2\alpha}{\tan 2\beta} = -1$.	
Part (b) (ii)	5 marks	Att 2
Part (b) (ii) 5 (b) (ii)	5 marks	Att 2

Blunders (-3)

B1 Error in $tan(180^{\circ} - 2\alpha)$ expansion

B2 Incorrect conclusion

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

A1 $\beta = 90^{\circ} - \alpha$ or $2\beta = 180^{\circ} - 2\alpha$ and stops

Part (c) (i)

5 (c) (i)

$$\tan 30^\circ = \frac{|AD|}{900} \implies |AD| = 900 \left(\frac{1}{\sqrt{3}}\right) = 300\sqrt{3} \text{ m.}$$

Blunders (-3)

- B1 Incorrect use of trigonometric ratio
- B2 Answer not in surd form

Slips (-1)

- S1 Arithmetic errors
- S2 Units omitted or incorrect

Attempts (3 marks)

A1 Identifies relevant right angled triangle

Worthless (0 marks)

W1 Relevant right angled triangle not indicated or implied

Part (c) (ii) $ AB ^2$		10 marks	Att 3
	BD	5 marks	Att 2
5 (c) (ii)			
	$ AB ^2 = (800)^2 + (9)^2$	$(200)^2 - 2(800)(900)\cos 60^\circ$	
	=640000+	810000-720000=730000	
	$\left BD\right ^{2} = \left AB\right ^{2} + \left A\right ^{2}$	$4D ^2 = 730000 + 270000 = 1000000.$	
	$\therefore BD = 1000 \text{ m}.$		

*Accept candidate's answer from (c)(i)

* If $|AB|^2$ worthless, then attempt at most for remainder of section

Blunders (-3)

- B1 Error in cosine formula with substitution
- B2 Use of decimals leading to incorrect answer

Slips (-1)

- S1 Arithmetic errors
- S2 Units omitted or incorrect (apply once only in this section)

Attempts (3, 2 marks)

A1 Cosine formula with some correct substitution

Worthless (0 marks)

W1 Right angle not identified or indicated

Att 3

Part (a)	10 marks	Att 3
Part (b)	20 (10, 10) marks	Att (3, 3)
Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)

Par	rt (a)	10 marks At	tt 3
6	(a)	Two adults and four children stand in a row for a photograph.	41
		How many different arrangements are possible if the four children are between t two adults?	the

Part (a)	10 marks	Att 3
6 (a)		
	Number of arrangements $= 2! \times 4! = 48$	
	Number of arrangements $= 2! \times 4! = 48$	
Blunders		

B1 2!×4!×2!

Attempts (3 Attempts) A1 4! A2 2!+4! or 2+4! (with or without further work)

Worthless (0 marks) W1 6!

Part (b)	20 (10, 10) marks	Att (3, 3)
6 (b) (i)	Solve the difference equation $u_{n+2} - 6u_{n+1} + 8u_n = 0$, where $n \ge 0$,	
	given that $u_0 = 0$ and $u_1 = 4$.	
(ii)	For what value of <i>n</i> is $u_n = 30(2^n)$?	

Part (b) (i)	10 marks	Att 3
6 (b) (i)		
	$x^{2} - 6x + 8 = 0 \implies (x - 2)(x - 4) = 0 \implies x = 2 \text{ or } x = 4.$	
	$u_n = l(2)^n + k(4)^n$	
	$u_0 = 0 \implies l + k = 0 \text{ and } u_1 = 4 \implies 2l + 4k = 4.$	
	$\therefore 2l - 4l = 4 \Longrightarrow l = -2 \text{ and } k = 2.$	
	$\therefore u_n = 2(4)^n - 2(2)^n \implies u_n = 2^{2n+1} - 2^{n+1}.$	

Blunders (-3)

- B1 Error in setting up quadratic
- B2 Error in solving quadratic
- B3 Error in general term
- B4 Equation in l and k

Slips (-1)

S1 Arithmetic errors

Attempts (3 marks)

- A1 Substitution into quadratic formula
- A2 Equation in l and k

Part (b) (ii) 10 marks	Att 3
6 (b) (ii)		
	$2^{2n+1} - 2^{n+1} = 30(2^n) \implies 2^n \cdot 2^n \cdot 2 - 2^n \cdot 2 = 30 \cdot 2^2 \implies 2^n \cdot 2 - 2 = 30$	
	$\Rightarrow 2^n - 1 = 15 \Rightarrow 2^n = 16 \Rightarrow \therefore n = 4.$	

Blunders (-3)

B1 Error in handling indices

Slips (-1) S1 Arithmetic errors

Attempts (3 marks) A1 $2^{2n+1} = 2^{2n} \cdot 2$ or equivalent

Part (c)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
· · ·	cards are drawn together at random from a standard pack of 52 pla , in decimal form, correct to two significant figures, the probability	
(i)	all five cards are diamonds	
(ii)	all five cards are of the same suit	
(iii)	the five cards are the ace, two, three, four and five of diamonds	
(iv)	the five cards include the four aces.	

Part (c) (i) 5 marks	Att 2
6 (c) (i)		
	$P(\text{ five diamonds}) = \frac{{}^{13}C_5}{{}^{52}C_5} = \frac{1287}{2598960} = 4.95 \times 10^{-4} = 5.0 \times 10^{-4} \text{ or } 0.00050$	

Blunders (-3)

- B1 Incorrect number of favourable outcomes
- B2 Incorrect number of possible outcomes

Slips (-1)

S1 Answer not to two significant figures

Attempts (2 marks)

A1
$$\frac{{}^{13}C_5}{{}^{52}C_5}$$

P(all same suit) = P(5 diamonds) + P(5 hearts) + P(5 clubs) + P(5 spades) $= 4 \times \frac{{}^{13}C_5}{{}^{52}C_5} = \frac{5148}{2598960} = 1.98 \times 10^{-3} = 2.0 \times 10^{-3} \text{ or } 0.0020$

Blunders (-3)

- B1 Incorrect number of favourable outcomes
- B2 Incorrect number of possible outcomes

Slips (-1)

S1 Answer not to two significant figures

Attempts (2 marks)

A1
$$4 \times \frac{{}^{13}C_5}{{}^{52}C_5}$$

Blunders (-3)

B1 Incorrect number of favourable outcomes

B2 Incorrect number of possible outcomes

Slips (-1)

S1 Answer not to two significant figures

Attempts (2 marks)

A1
$$\frac{{}^{5}C_{5}}{{}^{52}C_{5}}$$

Part (c) (iv	y) 5 marks	Att 2
6 (c) (iv)		
	$P(\text{four aces}) = \frac{{}^{4}C_{4} \times {}^{48}C_{1}}{{}^{52}C_{5}} = \frac{48}{2598960} = 1.84 \times 10^{-5} = 1.8 \times 10^{-5} \text{ or } 0.000018$	

Blunders (-3)

B1 Incorrect number of favourable outcomes

B2 Incorrect number of possible outcomes

Slips (-1)

S1 Answer not to two significant figures

Attempts (2 marks)

A1
$$\frac{{}^{4}C_{4} \times {}^{48}C_{1}}{{}^{52}C_{5}}$$

Part (a)	10 (5, 5) marks	Att (2, 2)
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)	20 (10, 10) marks	Att (3, 3)

Part (a)	10 (5, 5) marks	Att (2, 2)
7 (a) A te	am of four is selected from a group of seven girls and five boys.	
(i)	How many different selections are possible?	
(ii)	How many of these selections include at least one girl?	

Part (a) (i) 5 marks	Att 2
7 (a) (i)		
	Number of selections = ${}^{12}C_4 = 495$.	

Blunders (-3)

B1 ${}^7C_4 + {}^5C_4$

Slips (-1) S1 Arithmetic errors

Attempts (2 marks) A1 ${}^{7}C_{4}$ or ${}^{5}C_{4}$

Worthless

W1 $\frac{12!}{4!}$

Part (a) (ii) 5 marks	Att 2
7 (a) (ii)		
	Number of selections with no $girl = {}^{5}C_{4} = 5$.	
	Number of selections with at least one $girl = 495 - 5 = 490$.	
OR		
	${}^{7}C_{1}{}^{5}C_{3} + {}^{7}C_{2}{}^{5}C_{2} + {}^{7}C_{3}{}^{5}C_{1} + {}^{7}C_{4}{}^{5}C_{0} = 490$	

Blunders (-3)

B1 Term omitted

B2 Incomplete answer

Slips (-1) S1 Arithmetic errors

Attempts (2 marks) A1 ${}^{5}C_{4}$

A2 ${}^7C_1{}^5C_3$ or equivalent

Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
indic	arble falls down from A and must follow one of the path ated on the diagram. All paths from A to the bottom row qually likely to be followed.	A B C
(i)	One of the paths from A to H is A-B-D-H. List the other two possible paths from A to H.	D E F G H J K L M N P Q
(ii)	Find the probability that the marble passes through H or J.	
(iii)	Find the probability that the marble lands on N.	
(iv)	Two marbles fall from A, one after the other, without affect Find the probability that they both land at P.	eting each other.
Part (b) (i) 5 marks	Att 2
7 (b) (i)		

There are two other possible paths: A-B-E-H and A-C-E-H.

Blunders (-3)

B1 One path only

Part (b) (i	i) 5 marks A	Att 2
7 (b) (ii)	Paths to J are A-B-E-J, A-C-E-J and A-C-F-J.	
	\therefore There are 6 paths from A to H or J.	
	All of the possible paths from A to the GHJK row are:	
	A-B-D-G, A-B-D-H, A-B-E-H, A-B-E-J, A-C-E-H, A-C-E-J, A-C-F-J, A-C-F	-K.
	:. There are 8 possible paths.	
	(Or just $2 \times 2 \times 2 = 8$.)	
	$\therefore \text{ Probability} = \frac{6}{8} = \frac{3}{4}.$	

Blunders (-3)

- B1 Number of favourable outcomes incorrect
- B2 Number of possible outcomes incorrect

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

A1 Favourable and /or all possible outcomes listed correctly

Worthless (0 marks)

W1 Incomplete list of outcomes and stops

Part (b)	(iii) 5 marks	Att 2
7 (b) (iii	6 paths to N: ABDHN, ABEHN, ABEJN, ACEHN, ACEJN, ACFJN. 16 possible paths from A to bottom row. \therefore Probability = $\frac{6}{16} = \frac{3}{8}$.	
	<i>s (-3)</i> Imber of favourable outcomes incorrect Imber of possible outcomes incorrect	
<i>Slips (-1</i> S1 Ai) ithmetic errors	
-	<i>(2 marks)</i> vourable and /or all possible outcomes listed correctly	
W1 In	complete list of outcomes and stops	
W2 $\frac{1}{5}$	with or without explanation	
Part (b)	(iv) 5 marks	Att 2
7 (b) (iv	There are four paths from A to P. $\therefore 4 \times 4$ outcomes of interest There are 16 possible paths for each marble. $\therefore 16 \times 16$ outcomes in total. \therefore Probability = $\frac{4 \times 4}{16 \times 16} = \frac{1}{16}$.	
	s (-3) unber of favourable outcomes incorrect unber of possible outcomes incorrect	
<i>Slips (-1</i> S1 Ai) ithmetic errors	
A1 Fa	<i>(2 marks)</i> vourable and/or all possible outcomes listed correctly he marble only	
Worthle, W1 $\frac{1}{5}$	$\frac{1}{5} = \frac{1}{25}$	
Part (c) 7 (c) Th	20 (10, 10) marks e real numbers <i>a</i> , <i>b</i> and <i>c</i> have mean μ and standard deviation σ .	Att (3, 3)
(i)	Show that the mean of the numbers $\frac{a-\mu}{\sigma}$, $\frac{b-\mu}{\sigma}$ and $\frac{c-\mu}{\sigma}$ is 0.	
(ii	Find, with justification, the standard deviation of the numbers $\frac{a-\mu}{\sigma}$, $\frac{b-\mu}{\sigma}$ and $\frac{c-\mu}{\sigma}$.	
	[58]	

Part (c) (i)		10 marks	Att 3
7 (c) (i)			
	$\underline{a-\mu+b-\mu+c-\mu}$		
Mean =	σ	$=\frac{a+b+c-3\mu}{2}=\frac{3\mu-3\mu}{2}=0$, as $\frac{a+b+c}{2}=\mu$.	
Wiedii –	3	-3σ 3σ 3σ -3σ -3σ -4π	

B1 $a+b+c \neq 3\mu$ or equivalent

Slips (-1) S1 Arithmetic

S1 Arithmetic errors

Attempts (3 marks)

A1 Correct mean of *a*,*b*,and *c* A2 Expression for mean of $\frac{a-\mu}{\sigma}$, $\frac{b-\mu}{\sigma}$ and $\frac{c-\mu}{\sigma}$ *Worthless (0 Marks)* W1 $\frac{a-\mu}{\sigma} + \frac{b-\mu}{\sigma} + \frac{c-\mu}{\sigma}$ and stops

Blunders (-3)

B1 Error in squaring

Slips (-1) S1 Arithmetic errors

Attempts (3 marks)

A1 Expression for standard deviation correct

Part (a)	15 marks	Att 5
Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
Part (c)	15 (5, 5, 5) marks	Att (2, 2, 2)
i		

Blunders (-3)

- B1 Incorrect differentiation or integration
- B2 Incorrect 'parts' formula

Slips (-1)

- S1 Arithmetic error
- S2 Omits constant of integration

Attempts (5 marks)

- A1 One correct assigning in 'parts' formula
- A2 Correct relevant differentiation or integration

Part (b)	20 (5, 5, 5, 5) marks	Att (2, 2, 2, 2)
The recta	indow is in the shape of a rectangle with a semicircle on top. radius of the semicircle is r metres and the height of the angular part is x metres. perimeter of the window is 20 metres.	
(i)	Use the perimeter to express <i>x</i> in terms of <i>r</i> and π .	x
(ii)	Find, in terms of π , the value of r for which the area of the window is a maximum	2 <i>r</i>

Part (b) (i)	5 marks	Att 2
8 (b) (i)	Perimeter = $2x + 2r + \pi r = 20 \implies x = \frac{20 - 2r - \pi r}{2}$ metres.	

- **B**1 Error in perimeter
- Answer not in required form B2

Slips (-1)

- **S**1 Arithmetic errors
- S2 Omits units or incorrect units

Attempts (2 marks)

- A1 Expression for perimeter of semicircle
- Expression for perimeter of rectangular section of window A2

Part (b) (ii)Area in terms of <i>r</i>	5 marks	Att 2
Differentiation	5 marks	Att 2
Finish	5 marks	Att 2

8 (b) (ii)

Area of window = $A = 2rx + \frac{1}{2}\pi r^2$.

$$\therefore A = 2r\left(\frac{20 - 2r - \pi r}{2}\right) + \frac{1}{2}\pi r^{2} = 20r - 2r^{2} - \frac{1}{2}\pi r^{2}.$$

$$\therefore \frac{dA}{dr} = 20 - 4r - \pi r.$$

For $\frac{dA}{dr} = 0 \Rightarrow 20 - 4r - \pi r = 0$

$$\Rightarrow r(4 + \pi) = 20.$$

$$\therefore r = \frac{20}{4 + \pi}.$$

$$\frac{d^{2}A}{dr^{2}} = -4 - \pi < 0. \quad \therefore \text{ Area of window is a maximum for } r = \frac{20}{4 + \pi}$$

* If candidate's expression for perimeter in (b)(i) contains square units, then cannot get any further marks in this section

20

- metres

Blunders (-3)

- Error in eliminating x from expression for area B1
- B2 Error in differentiation
- B3 Error in finding *r*

Slips (-1)

- **S**1 Arithmetic errors
- Omits units or incorrect units S2

Attempts (2, 2, 2)

- Some correct differentiation A1
- A2 $20 - 4r - \pi r = 0$ and stops

Worthless (0 marks)

W1 Non quadratic expression for area

Part (c)15 (5, 5, 5) marksAtt (2, 2, 2)8 (c)The Maclaurin series for $\tan^{-1}x$ is $x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$ (i)(i)Write down the general term of the series.(ii)Use the Ratio Test to show that the series converges for |x| < 1.(iii)Using the fact that $\frac{\pi}{4} = 4\tan^{-1}\frac{1}{5} - \tan^{-1}\frac{1}{239}$, and taking the first three terms in the Maclaurin series for $\tan^{-1}x$, find an approximation for π . Give your answer correct to five decimal places.

Part (c) (i) 5 marks Att 2
8 (c) (i)
$$u_n = \frac{x^{2n-1}}{2n-1} (-1)^{n+1}$$

Blunders (-3)

- B1 -1 omitted in general term
- B2 Incorrect *x* index in general term

B3 Value of *n* in denominator does not match index of *x* in numerator

Slips (-1)

Attempts (2 marks)

A1 One part of general term correct

Part (c) (ii)5 marksAtt 28 (c) (ii)Limit
$$\left| \frac{u_{n+1}}{u_n} \right| = \text{Limit} \left| \frac{x^{2n+1}}{2n+1} (-1)^{n+2} \times \frac{2n-1}{x^{2n-1} (-1)^{n+1}} \right|$$
 $= \text{Limit} \left| \frac{x^2 (2n-1)}{2n+1} (-1) \right| = \text{Limit} \left| \frac{x^2 (2-\frac{1}{n})}{2+\frac{1}{n}} \right| = x^2.$ \therefore Convergent for $x^2 < 1 \Rightarrow$ convergent for $|x| < 1.$

*Note: If candidate gets 0 marks in (c)(i) then attempt mark at most in (c)(ii) If candidate's x index is incorrect in (c)(i), then attempt mark at most in (c)(ii)

Blunders (-3)

B1 Error in u_{n+1}

B2 Error in limits other than slips

B3 $|x^2|$ or $|-x^2|$ mishandled

B4 Incorrect conclusion

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

A1 Ratio test used correctly

Part (c) (iii)

8 (c) (iii) $\frac{\pi}{4} = 4 \left[\frac{1}{5} - \frac{1}{3(5)^3} + \frac{1}{5(5)^5} \right] - \left[\frac{1}{239} - \frac{1}{3(239)^3} + \frac{1}{5(239)^5} \right]$ $\therefore \pi = 3.14162.$

Blunders (-3)

B1 Term omitted in expansion

Slips (-1) S1 Arithmetic error

Attempts (2 marks)

A1 Correct listing of one series and stops

Att2

Part (a)	10 marks	Att 3
Part (b)	20 (10, 10) marks	Att (3, 3)
Part (c)	20 (5, 5, 10) marks	Att (2, 2, 3)

Part (a)	10 marks	Att 3
	andom variable with standard normal distribution.	
Use the	e tables to find the value of z_1 for which $P(Z \ge z_1) = 0.0778$.	
Part (a)	10 marks	Att 3
9 (a)		
	$P(Z \ge z_1) = 0.0778 \implies 1 - P(Z \le z_1) = 0.0778.$	
	$P(Z \le z_1) = 0.9222 \implies z_1 = 1.42.$	

B2 Incorrect area

Slips (-1) S1 Arithmetic errors

Attempts (3 marks) A1 $P(Z \ge z_1) \implies 1 - P(Z \le z_1)$

Part (b)	20 (10, 10) marks	Att (3, 3)
	sed in such a way that the probability of rolling a six is <i>p</i> .	
The other t	ive numbers are equally likely. This biased die and a fair die	e are rolled
simultaneo	usly. Show that the probability of rolling a total of 7 is indep	pendent of <i>p</i> .

Probability of other single outcome	10 marks	Att 3
Finish	10 marks	Att 3
9 (b)		
Probability of 6 on biased die = p		
Probability of not 6 on biased die	=1- <i>p</i>	
\Rightarrow probability of any other single of	outcome (of which there are 5) on die = $\frac{1-p}{5}$.	
Probability of a total of seven from [i.e. $(6, 1), (5, 2), (4, 3), (3, 4), ($		
$= p\left(\frac{1}{6}\right) + \left(\frac{1-p}{5}\right)\frac{1}{6} + \left(\frac$	$\frac{1-p}{5}\bigg)\frac{1}{6} + \bigg(\frac{1-p}{5}\bigg)\frac{1}{6} + \bigg(\frac{1-p}{5}\bigg)\frac{1}{6}$	
$= \frac{p}{6} + \frac{5}{6} \left(\frac{1-p}{5} \right) = \frac{p+1-p}{6} = \frac{1}{6}.$		

Blunders (-3)

- B1 Divisor other than 5
- B2 Each term omitted to max of 3
- B3 Incorrect or no conclusion written or implied

Slips (-1) S1 Arithmetic errors

Attempts (3, 3 marks)

- A1 Reference to 1 p
- A2 Listing favourable outcomes (must have (6, 1) and at least one other outcome)
- A3 One correct term

Part (c)	20 (5, 5, 10) marks Att (2, 2, 3)
Matl sugg all o	mean percentage mark for candidates in the 2010 Leaving Certificate Higher Level nematics examination was 67.0% , with a standard deviation of 10.4% . The sestion that candidates who appealed their results have, on average, similar results to ther candidates, is being investigated. A random sample of candidates who ealed is taken. The mean percentage mark of this sample is 69.3% .
(i)	Show that if the sample size was 25, then this result <i>is not</i> significant at the 5% level.
(ii)	Show that if the sample size was 100, then this result <i>is</i> significant at the 5% level.
(iii)	What is the smallest sample size for which this result could be regarded as

(iii) What is the smallest sample size for which this result could be regarded as significant at the 5% level?

Part (c) (i)	5 marks	Att 2
9 (c) (i)		
	$n = 25, \ \mu = 67, \ \sigma = 10.4, \ \overline{x} = 69.3.$	
	$\frac{\overline{x} - \mu}{\sigma_{\overline{x}}} = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{69 \cdot 3 - 67}{\frac{10 \cdot 4}{\sqrt{25}}} = \frac{2 \cdot 3}{2 \cdot 08} = 1.105 < 1.96.$	
	: Result not significant.	
OR	C	
	$\mu - 1.96\sigma_{\overline{X}} \le \overline{x} \le \mu + 1.96\sigma_{\overline{X}}$	
	$67 - \frac{(1.96)(10.4)}{\sqrt{25}} \le \overline{x} \le 69.3 + \frac{(1.96)(10.4)}{\sqrt{25}}$ $62.9232 \le \overline{x} \le 71.0768$ Within range \Rightarrow not significant	

Blunders (-3)

B1 Error in formula

B2
$$\sigma_{\bar{x}} \neq \frac{\sigma}{\sqrt{n}}$$

B3 Incorrect or no conclusion implied

Slips (-1) S1 Arithmetic errors

Attempts (2 marks) A1 Formula partially substituted 9 (c) (ii) $n = 100, \ \mu = 67, \ \sigma = 10.4, \ \overline{x} = 69.3.$ $\frac{69.3 - 67}{\frac{10.4}{\sqrt{100}}} = \frac{2.3}{1.04} = 2.211 > 1.96.$ \therefore Result is significant.

Blunders (-3)

B1 Error in formula

B2
$$\sigma_{\overline{x}} \neq \frac{\sigma}{\sqrt{n}}$$

B3 Incorrect or no conclusion

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

A1 Formula partially substituted

Part (c) (iii)	10 marks	Att 3
9 (c) (iii)		
	$\mu = 67, \ \sigma = 10.4 \ \overline{x} = 69.3.$	
	$\frac{69.3 - 67}{\frac{10.4}{5}} = \frac{2.3\sqrt{n}}{10.4} \ge 1.96.$	
	$\overline{\sqrt{n}}$ $2.3\sqrt{n} \ge 1.96 \times 10.4 \implies \sqrt{n} \ge 8.862.$	
	$\therefore n > 78.55 \implies n = 79.$	
	: Smallest sample size is 79.	

Blunders (-3) B1 Error in formula

B2
$$\sigma_{\bar{x}} \neq \frac{\sigma}{\sqrt{n}}$$

B3 Incorrect or smallest sample not chosen

Slips (-1) S1 Arithmetic errors

Attempts (3 marks) A1 Formula partially substituted

Part (a) Part (b)		10 (5, 5) marks 40 (5, 5, 5, 5, 10, 5, 5) marks		Att (2, 2) Att (2, 2, 2, 2, 3, 2, 2)		
Part	t (a)	10 (5, 5) marks	Att (2, 2)		t (2, 2)	
10	(a)	A Cayley table for the group $(\{a, b, c\}, *)$ is shown.	*	a	b	c
		(i) Write down the identity element.	a	с	a	b
			b	а	b	с
		(ii) Write down the inverse of each element.	С	b	с	a

Part (a) (i)	5 marks	Att 2
10 (a) (i)		
	Identity element = b .	

Attempts (2 marks)

A1 Identity property stated but element not identified

Part (a) (ii)	5 marks	Att 2
10 (a) (ii)		
	$a^{-1} = c$, $b^{-1} = b$, $c^{-1} = a$.	

Blunders (-3)

B1 Inverse of any element omitted

Attempt (2 marks)

A1 $a^*a^{-1} = b$

A2 Any correct inverse

Part (b)	40 (5, 5, 5, 5, 10, 5, 5) marks	Att (2, 2, 2, 2, 3, 2, 2)
sym The	egular tetrahedron has twelve rotational metries. These form a group under composition, \circ . symmetries can be represented as permutations of vertices <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> .	A
(i)	Write down in permutation form, one element x of order 3, and describe this symmetry geometrically.	
(ii)	Write down in permutation form, one element y of order 2, and describe this symmetry geometrically	
(iii)	Show that $x \circ y \neq y \circ x$.	C
(iv)	Let <i>S</i> be the set $\{e, x, y, x \circ y, y \circ x, x \circ x\}$, where e transformation. Show that <i>S</i> is not closed under \circ .	e is the identity
(v)	Let <i>H</i> be a subgroup of <i>G</i> . Let $x \in H$ and $y \in H$. She	by that $H = G$.

Part (b) (i) Permutation	5 marks	Att 2
Description	5 marks	Att 2

10 (b) (i) Fix one vertex e.g. A There are eight possible answers, such as: $x = \begin{pmatrix} A & B & C & D \\ A & C & D & B \end{pmatrix}$ Geometrically, this is a rotation of $\frac{2\pi}{3}$ about the axis *AG*, where *G* is the centroid of the triangle *BCD*. The other solutions correspond to rotations of $\frac{2\pi}{3}$ or $\frac{4\pi}{3}$ about this or similar axes.

Blunders (-3)

- B1 Permutation other than order 3
- B2 Incomplete geometrical justification

Slips (-1)

S1 Arithmetic errors

Attempts (2, 2 marks)

A1 Incorrect angle of rotation

Part (b) (ii)Permutation	5 marks	Att 2
Interpretation	5 marks	Att 2
10 (b) (ii)		
There are three possible ans	wers, such as:	
$\begin{pmatrix} A & B & C & D \end{pmatrix}$		
$y = \begin{pmatrix} A & B & C & D \\ D & C & B & A \end{pmatrix}.$		
Geometrically, this is a rota	tion of π about the axis through the	mid points of the
opposite edges [AD] and [B	<i>C</i>].	-

Blunders (-3)

B1 Incomplete geometrical interpretation

Slips (-1) S1 Arithmetic errors

Attempt (2, 2 marks) A1 Reference to π

Part (b) (iii)	10 marks	Att 3
10 (b) (iii)		
$x \circ y = \begin{pmatrix} A & B & C & D \\ A & C & D & B \end{pmatrix} \begin{pmatrix} A \\ D \end{pmatrix}$		
$y \circ x = \begin{pmatrix} A & B & C & D \\ D & C & B & A \end{pmatrix} \begin{pmatrix} A \\ A \end{pmatrix}$		
$\therefore x \circ y \neq y \circ x.$		
Note: compositions depend of correct cases.	on candidate's choice of x and y , but	will be unequal in all

Error in composition **B**1

B2 Incorrect conclusion stated or implied

Slips (-1)

S1 Arithmetic errors

Attempts (3 marks) $x \circ y$ identified A1

(b) (iv)	5 marks	Att 2
) (iv)		
$(y \circ x)(x \circ y) = \begin{pmatrix} A & B & 0 \\ D & B & 0 \end{pmatrix}$	$ \begin{pmatrix} C & D \\ A & C \end{pmatrix} \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix} = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix} $	$ \begin{pmatrix} C & D \\ A & D \end{pmatrix} \notin S. $
\therefore S is not closed. Note: other correct example choice of x and y.	bles of non-closure exist, and are dep	pendent on candidate's
Note: other correct examp	bles of non-closure exist, and are de	pendent on candidate's

- Blunders (-3) B1 Incorrect composition
- B2 No conclusion stated or implied

Slips (-1)

Arithmetic errors **S**1

Attempts (2 marks)

A1 At least 2 elements of composition correct

Part (b) (v	() 5 marks	Att 2
10 (b) (v)		
	By Lagrange's theorem, any subgroup H of G must be of order 1, 2, 3, 4, 6 o	r 12.
	But <i>H</i> must at least contain the elements $\{e, x, y, x \circ y, y \circ x, x \circ x\}$.	
	But by part (iii), this set is not closed. Thus it must contain 12 elements.	
	Hence $H = G$.	

Blunders (-3)

- **B**1 Error in use of Lagrange's Theorem
- No reference to issue of non-closure from (iii) B2

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

A1 Definition of a subgroup written or implied.

Part (a) Part (b)	10 marks 40 (10, 5, 10, 15) marks Att (3, 2	Att 3 2, 3, 5)
Part (a)	10 marks	Att 3
11 (a)	An ellipse, centre $(0,0)$, has eccentricity $\frac{1}{2}$. One focus is at (2,0). Find the equation of the ellipse.	
Part (a)	10 marks	Att 3

Part (a)	10 marks	Att 3
11 (a)		
	$ae = 2 \Rightarrow a(\frac{1}{2}) = 2 \Rightarrow a = 4 \text{ and } b^2 = a^2(1-e^2) \Rightarrow b^2 = 16(1-\frac{1}{4}) = 12.$	
	Ellipse is $\frac{x^2}{16} + \frac{y^2}{12} = 1.$	

Blunders (-3)

B1 Values of a^2 and b^2 found but equation not formed

B2 Error in formula

B3 Mishandling e^2

Slips (-1) S1 Arithmetic errors

Attempts (3 marks) A1 a = 4 and stops

Part (b)40 (10, 5, 10, 15) marksAtt (3, 2, 3, 5)11 (b)(i)
$$P(x_1, y_1)$$
 and $Q(x_2, y_2)$ are two distinct points such that $x_1 \le x_2$.
If the slope of PQ is $\tan \theta$, and the length of $[PQ]$ is d , express $(x_2 - x_1)$
and $(y_2 - y_1)$ in terms of d and θ .(ii)Let f be the transformation $(x, y) \rightarrow (x', y')$, where $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 6 \\ 1 \end{pmatrix}$.
Show that $\frac{|f(P)f(Q)|}{|PQ|} = \sqrt{(2\cos\theta + 5\sin\theta)^2 + (3\cos\theta + 4\sin\theta)^2}$.(iii)Deduce that the ratio of lengths on parallel lines is invariant under f .

Part (b) (i)10 marksAtt 311 (b) (i)
$$|PR| = x_2 - x_1$$
 and $|QR| = y_2 - y_1$. \bigvee $\cos \theta = \frac{x_2 - x_1}{d} \Rightarrow x_2 - x_1 = d \cos \theta$. \bigvee $\sin \theta = \frac{y_2 - y_1}{d} \Rightarrow y_2 - y_1 = d \sin \theta$. \bigvee

B2 $x_2 - x_1 = d \cos \theta$ only

Slips (-1) S1 Arithmetic errors

Attempts (3 marks)

A1
$$\tan \theta = \frac{y_2 - y_1}{x_2 - x_1}$$

Part (b) (ii) $\frac{ f(P)f(Q) }{ PQ }$	5 marks	Att 2
Finish	10 marks	Att 3
11 (b) (ii)		
$f(P) = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix}$	$\binom{x_1}{y_1} + \binom{6}{1} = \binom{2x_1 + 5y_1 + 6}{3x_1 + 4y_1 + 1}$ and $f(Q) = \binom{2x_2 - 3x_2}{3x_2 - 3x_2}$	$(+5y_2+6) + 4y_2+1$.
$\cdot \frac{ f(P)f(Q) }{\sqrt{2\pi}} = \frac{\sqrt{2\pi}}{\sqrt{2\pi}}$	$\frac{x_2 + 5y_2 + 6 - 2x_1 - 5y_1 - 6)^2 + (3x_2 + 4y_2 + 1 - 3)^2}{d}$	$(x_1 - 4y_1 - 1)^2$
PQ	d	
$=\frac{\sqrt{2(2)}}{\sqrt{2}}$	$(x_2 - x_1) + 5(y_2 - y_1)]^2 + [3(x_2 - x_1) + 4(y_2 - y_1)]^2$	
	d	
$-\sqrt{(2a)}$	$d\cos\theta + 5d\sin\theta)^2 + (3d\cos\theta + 4d\sin\theta)^2$	
	d	
$-\frac{d\sqrt{2}}{d\sqrt{2}}$	$2\cos\theta + 5\sin\theta)^2 + 3(\cos\theta + 4\sin\theta)^2$	
	d	
$=\sqrt{(2c)}$	$(\cos\theta + 5\sin\theta)^2 + (3\cos\theta + 4\sin\theta)^2$	

Blunders (-3)

- B1 Error in matrix multiplication
- B2 Incorrect conclusion

Slips (-1) S1 Arithmetic errors

Attempts (2, 3 marks)

A1 f(P) or equivalent

A2 Distance formula with some correct substitution for |f(P)f(Q)|

Part (b) (iii)	15 marks	Att 5
11 (b) (iii)		
[PQ]and	d[RS]are parallel lines	
[PQ] and $[RS]$ are mapped to $[f(P)f(Q)]$ and $[f(R)f(S)]$ respectively.		
By part (ii), j	$f(P)f(Q) = k PQ $, where $k = \sqrt{(2\cos\theta + 5\sin\theta)^2 + (3\cos\theta + 4\sin\theta)^2}$	-
Since k depends only on θ , it is the same k for both segments.		
f(P)	f(Q) = k PQ = PQ	
$\cdots \overline{ f(R) }$	$\overline{f(S)} = \overline{k RS } = \overline{ RS }$	

Blunders (-3)

B1 Fails to justify |f(R)f(S)| = k|RS|

B2 No conclusion or incorrect conclusion

Slips (-1) S1 Arithmetic errors

Attempt (5 marks) A1 |f(P)f(Q)| = k|PQ|

MARCANNA BREISE AS UCHT FREAGAIRT TRÍ GHAEILGE

(Bonus marks for answering through Irish)

Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d'iomlán na marcanna don pháipéar. Ba chóir freisin an marc bónais sin a shlánú **síos**.

Déantar an cinneadh agus an ríomhaireacht faoin marc bónais i gcás gach páipéir ar leithligh.

Is é 5% an gnáthráta agus is é 300 iomlán na marcanna don pháipéar. Mar sin, bain úsáid as an ngnáthráta 5% i gcás iarrthóirí a ghnóthaíonn 225 marc nó níos lú, e.g. 198 marc \times 5% = $9.9 \Rightarrow$ bónas = 9 marc.

Má ghnóthaíonn an t-iarrthóir níos mó ná 225 marc, ríomhtar an bónas de réir na foirmle $[300 - bunmharc] \times 15\%$, agus an marc bónais sin a shlánú **síos**. In ionad an ríomhaireacht sin a dhéanamh, is féidir úsáid a bhaint as an tábla thíos.

Bunmharc	Marc Bónais
226	11
227 - 233	10
234 - 240	9
241 - 246	8
247 - 253	7
254 - 260	6
261 - 266	5
267 - 273	4
274 - 280	3
281 - 286	2
287 - 293	1
294 - 300	0