1.(a) Simplify each of the following algebraic expressions.
(i) $\frac{12 m^{2} n^{3}}{\left(6 m^{4} n^{5}\right)^{2}}$
(ii) $\frac{3+\frac{1}{x}}{\frac{5}{x}+4}$
(iii) $\frac{2+\frac{x}{2}}{x^{2}-16}$
(b) Solve for x and y :
(i) $y=x+4$
(ii) $3 x+y=7$
$x^{2}+y^{2}=13$
(c) Find the integers a and b such that
(i) $(3-\sqrt{2})^{2}=a-b \sqrt{2}$
(ii) $\left(\frac{1-\sqrt{2}}{1+\sqrt{2}}\right)=a \sqrt{2}-b$.
(d) If $p(x-q)^{2}+r=2 x^{2}-12 x+5$ for all values of x, find the values of p, q and r.
(e) Solve the simultaneous equations $3 x+5 y-z=-3$

$$
\begin{aligned}
& 2 x+y-3 z=-9 \\
& x+3 y+2 z=7
\end{aligned}
$$

(f) \quad Simplify $(b+1)^{3}-(b-1)^{3}$.
(g) Factorise the following:
(i) $6 x y+3 x^{2} y-9 x^{2} x^{3}$
(ii) $4 x^{2}-25 y^{2}$
(iii) $2 x^{2}-11 x+5 \quad$ (iv) $x^{3}+y^{3}$
(v) $27 x^{3}-8 x^{3}$
(h) The time taken for one complete cycle of a pendulum is given by $T=2 \pi \sqrt{\frac{l}{g}}$ where l is the length of the pendulum and g is the acceleration due to gravity.
(i) Find l in terms of the other variables.
(ii) Given that $T=3$ and $g=10$, calculate the length of the pendulum correct to one decimal place.
(i) Three times the width of a certain rectangle exceeds twice the length by 3 cm .

Four times the length is 12 cm more than its perimeter.
Find the dimensions of the rectangle.
(j) The area of a rectangle, $A(x)=6 x^{2}+4 x-2$. If the length is given by ($3 x-1$), find
(i) an expression for the width of the rectangle.
(ii) an expression for the perimeter, $P(x)$, of the rectangle.

