1. Given that $\sqrt{4 x^{2}+12 x+9}=a x+b$, find the values of the constants a and b.
2. Express $\frac{3}{\sqrt{20}}+\frac{8}{\sqrt{45}}$ in the form $\frac{k \sqrt{m}}{n}$ where k, m and $n \in \mathrm{~N}$
3. Explain briefly what is meant by the factor theorem.
4. Find the value of k if the equation $k^{2} x^{2}+2(k+1) x+4=0$ has equal roots.
5. Given that $x-1$ is a factor of $2 x^{3}+t x^{2}+4 x+2 t$, find the value of t.

6. Factorise fully
(i) $x^{4}-x$
(ii) $3 x^{2}+26 x-9$
7. Given that the quadratic equation $x^{2}+2 t x-2 x+2 t+1=0$ has equal roots,
(i) find the value of t where $t>0$.
(ii) use this value of t to evalute the roots.
8. Write down a quadratic equation that has roots of 2 and -3 in the form of $a x^{2}+b x+c=0$ where $a, b, c \in \mathrm{Z}$.
9. Solve the following equation: $x^{2}+6 x-2=0$ leaving your answers in surd form:
10. Fill in the following table

Quadratic	Discriminant	Nature of roots
$x^{2}+6 x+9$		
$2 x^{2}+3 x+2$		
$3 x^{2}+6 x+2$		

