TY Hons Maths: Problem Set 3

1. Factorise fully the following:
(i) $x^{2}+2 x y+y^{2}$
(ii) $x^{2}-2 x y+y^{2}$
(iii) $4 k^{2}+7 k t-2 t^{2}$.
(iv) $x^{4}-y^{4}$
2. Simplify $\frac{x^{-\frac{1}{2}}+x^{\frac{1}{2}}}{x^{-\frac{1}{2}}-x^{\frac{3}{2}}}$
3. Prove that $k+1$ is a root of the function $f(x)=x^{2}-2 x-k^{2}+1$, where k is a constant.
4. A quadratic function has roots of -2 and -1 . It also contains the point $(-3,8)$.

Evaluate the function in the form $a x^{2}+b x+c=0$ where $a, b, c \in \mathrm{Z}$
5. Find the real numbers a and b such that

$$
2 x^{2}+6 x+4=k(x+r)^{2}+p
$$

6. The area of a rectangle, $A(x)=6 x^{2}+4 x-2$. If the length is given by $(3 x-1)$, find
(i) an expression for the width of the rectangle.
(ii) an expression for the perimeter, $P(x)$, of the rectangle.
7. Write down a quadratic equation that has roots of $\frac{1}{2}$ and $\frac{1}{4}$ in the form of $a x^{2}+b x+c=0$ where a, b and $c \in Z$
8. Solve the following systems of equations:

$$
\begin{aligned}
x+y+z & =6 \\
x-2 y-z & =-2 \\
3 x-5 y+z & =0
\end{aligned}
$$

