TY Hons Maths: Problem Set 3

1. Factorise fully the following:

(i)
$$x^2 + 2xy + y^2$$
 (ii) $x^2 - 2xy + y^2$ (iii) $4k^2 + 7kt - 2t^2$. (iv) $x^4 - y^4$

- 2. Simplify $\frac{x^{-\frac{1}{2}} + x^{\frac{1}{2}}}{x^{-\frac{1}{2}} x^{\frac{3}{2}}}$
- **3**. Prove that k + 1 is a root of the function $f(x) = x^2 2x k^2 + 1$, where k is a constant.
- **4.** A quadratic function has roots of -2 and -1. It also contains the point (-3, 8). Evaluate the function in the form $ax^2 + bx + c = 0$ where $a, b, c \in \mathbb{Z}$
- 5. Find the real numbers *a* and *b* such that

$$2x^2 + 6x + 4 = k(x+r)^2 + p$$

- 6. The area of a rectangle, $A(x) = 6x^2 + 4x 2$. If the length is given by (3x 1), find (i) an expression for the width of the rectangle.
 - (ii) an expression for the perimeter, P(x), of the rectangle.
- 7. Write down a quadratic equation that has roots of $\frac{1}{2}$ and $\frac{1}{4}$ in the form of $ax^2 + bx + c = 0$ where *a*, *b* and $c \in Z$
- **8.** Solve the following systems of equations:

$$x + y + z = 6$$
$$x - 2y - z = -2$$
$$3x - 5y + z = 0$$